Monitoring report of GHGs emission reduction

JI PROJECT:

"IMPLEMENTATION OF MODERN TECHNOLOGIES OF SINTER PRODUCTION AND BLAST FURNACES CHARGING AT OJSC "MMK"

Monitoring period: 01.01.2009 - 31.12.2010

Version 1.2. (final after verification)

Data of development of this version: 12 July 2011

CONTENTS

Section A.	General information on the project	p. 3
Section B.	Monitoring system of GHGs emission reduction	p. 5
Section C.	Adjustments and deviations from the monitoring plan presented in PDD	p. 18
Section D.	Calculation of GHGs emission reduction	p. 20
Appendix 1	Color legend for calculation tables	p. 51
Appendix 2	List of abbreviations	p. 52
Appendix 3	Calculation of specific CO_2 emissions per 1 ton of metallurgical coke produced by BPCP of MMK	p. 53
Appendix4	Calculation of emission factor for electricity produced at MMK	p. 55

A. General information on the project

A.1. Introduction

The aim of the report is representation of monitoring results and results of calculation of Emission Reduction Units (ERUs) generated by JI project "Implementation of modern technologies of sinter production and blast furnaces charging at OJSC "MMK" for the period from January 01, 2009 to December 31, 2010.

Monitoring report is prepared in accordance with PDD version 1.4 from September 29, 2010 (positive determination opinion was received from Accredited Independent Entity Bureau Veritas, report № RUSSIA-det/0084/2010).

The project has no approval yet in the Russian Federation as a Host Party. This is in process of receipt awaiting the announcement for submission of the project application to the Operator of carbon units (Sberbank) in accordance with procedure stipulated in the Decree #843 of 28, October 2009.

The Declaration of Approval from State of the Netherlands, acting through the Ministry of Economic Affairs, Agriculture and Innovation and its implementing agency "NL Agency", being the Designated Focal Point for Joint Implementation (JI) in The Netherlands has been received for the project by 15th April 2011.

A.2. Brief description of the project

The proposed Joint Implementation project considers complex resource-saving effect of construction of sinter cooling and stabilization units (SCaSU) at sintering plants #2 and #3 and sequential installation of bell-less top chargers (BLT) at blast furnaces #4, 6, 9, 10, 2. The project was implemented during 2006-2010 in accordance with the following schedule:

Date	Activity
November 2006	Installation of BLT at BF #4
December 2006	Installation of SCaSU at SP #3
March 2007	Installation of BLT at BF #6
July 2007	Installation of SCaSU at SP #2
December 2007	Installation of BLT at BF #9
August 2010	Installation of BLT at BF #10
March 2010	Installation of BLT at BF #2

Table A.2.1. Project implementation schedule

Due to installation of SCaSUs the efficiency and performance of the blast furnace process was improved because fine fraction of sinter cake is screened out at SCaSU and does not come to the blast furnace plant. Implementation of SCaSU reduces specific consumption of skip metallurgical coke in the blast furnace, besides less charging material is wasted as dust and slug. A bell-less top charger makes charging process more manageable, so that any desired profiles of furnace charge materials can be obtained. A blast furnace with BLT charger may use fine fractions of coke (coke nut) and iron ore, which is hardly possible with a bell charger.

In the absence of the proposed JI project MMK would have been used hot non-stabilized agglomerate on BF #4, 6, 9, 10, 2 equipped with the double bell chargers.

A.3. Emission reduction during monitoring period

In the current report we take into account emission reduction generated during 2009 and 2010. Detailed calculations are given in the section D.

Actual emission reduction units (ERUs) are:

From January 1 to December 31, 2009: 217 636 tones CO_{2e}

From January 1 to December 31, 2010: 140 448 tones CO_{2e}

In accordance with PDD, version 1.4 from September 29, 2010 the <u>expected volumes</u> of Emission Reduction Units (ERUs) are:

From January 1 to December 31, 2009: 234 483 tones CO_{2e}

From January 1 to December 31, 2010: 333 580 tones CO_{2e}

The actual generation of ERUs in 2010 is less than calculated in the PDD because of increase of specific consumption of skip metallurgical coke and decrease of pig iron production in comparison with PDD assumptions.

A.4. Contact information of project participants.

Contact person of project owner:

Company:	OJSC "Magnitogorsk Iron and Steel Works"
Street:	Kirova
Building:	93
City:	Magnitogorsk
State/region	-
Zip code:	455000
Country:	Russia
Phone:	+7 (3519) 24-78-98
Fax:	+7 (3519) 24-71-40
e-mail:	mit@mmk.ru
website:	www.mmk.ru
Representative:	
Position:	Manager of environmental and regional programs
Title:	Mr.
Family name:	Mitchin
Name:	Andrey Mikhailovich
Department:	Department for relations with state authorities and markets protection

Contact person of consultant of project owner and developer of this monitoring report:

Company:	CTF Consulting, LLC
Street:	Baltschug
Building:	7
City:	Moscow
State/region	-
Zip code:	115035
Country:	Russia
Phone:	+7 (495) 984-59-51

Fax:	+7 (495) 984-59-52
e-mail:	konstantin.myachin@carbontradefinance.com
website:	http://www.carbontradefinance.com/
Representative:	
Position:	Carbon projects manager
Title:	
Family name:	Myachin
Name:	Konstantin Yurevich
Department:	-

B. Monitoring system of GHGs emission reduction

B.1 Collection and archiving of information about environmental impact of the project

In accordance with requirements of Articles 14, 22 the Federal Law on environmental protection # 7-FZ OJSC "MMK" has the approved Maximum Permissible Emissions (MPE) document. This document is approved by Chelyabinsk Regional Department of Technological and Environmental Surveillance of Rostechnadzor. This decision is valid for one year. Under this decision the harmful emission permit is issued. This permit quantified impacts to atmosphere by OJSC "MMK".

For confirmation of MPE the air emissions were estimated by OJSC "Magnitogorsk GIPROMEZ" in accordance with Russian "Guidelines for calculation of industrial emissions of air pollutants" (OND-86)¹. These estimations were based on OJSC "MMK" Emission Inventory and Emission Sources Report done by Federal State Unitary Enterprise "All-Russian Institute for Carbon Chemistry" in Yekaterinburg (2008). This report was approved according to the established procedure.

Laboratory for Control of Air Quality of OJSC "MMK" performs environmental monitoring according to the monitoring schedule.

According to the provisions of Russian environmental law (Federal Law №7-FZ of 10.01.2002 "On Environmental Protection"), environmental experts and managers of polluting enterprises must have qualifications in environmental protection and environmental safety. Functions of the Department of environmental protection are ensuring compliance with environmental quality standards, obtaining government permits for emissions and discharges of hazardous substances, disposal of waste.

In accordance with referred above Federal Law OJSC "MMK" has the approved Maximum Permissible Discharge of Sewage document (MPDS) and Permissible Norm of Producing and Placement of Wastes document (PNPPW). In these documents procedure of collecting and archiving of information on the environmental impacts is defined.

There is a monitoring plan in MPDS document, which is defined the monitoring parameters, frequency of measurement for each parameter and responsible personnel. Monitoring plan is approved by OJSC "MMK". In PNPPW document list and quantity of produced wastes, frequency of producing, places of storage and responsible personnel are defined. This document is approved by OJSC "MMK".

Considering the above we can conclude that OJSC "MMK" conduct the periodic monitoring of the environment impacts. The enterprise also has an environmental management system certified by ISO 14001.

According to the information from Environmental department of OJSC "MMK" received during visits in August 2010 and January 2011:

The project was realized in 2006-2010 period and environmental protection equipment designed for it (new electrostatic scrubbers on sinter plant #2 and #3) operates normally.

Emissions of polluting substances are normalized in the permission to emission of the polluting substances, given out by Rostehnadzor in the Chelyabinsk area. Results of inventory of emissions are presented annually.

According to the permission, emissions of pollutant substances don't create maximum concentration limit excess, except for a number of substances (nitrogen (IV) a dioxide, sulfur a dioxide, hydrogen sulfide, carbon oxide, phenol) for which temporarily permission is established.

¹ <u>http://www.vsestroi.ru/snip_kat/ad977f56010639c6e1ba95802d182677.php</u>

The polluted water is treated at local treatment facilities. The enterprise has several closed loop water turnover systems. The water which is subject to the discharge is released in the river Sukhaya (inflow of the river Ural).

Placing of a waste occurs in conformity to the project of specifications of formation of a waste and limits on their placing, confirmed by Rostehnadzor in the Chelyabinsk area.

B.2 Methodological approach (extracts from PDD, ver. 1.4 from September 29, 2010)

Monitoring of project and baseline GHGs emissions in 2009-2010 was implemented in accordance with PDD ver. 1.4 from September 29, 2010 except of several adjustments and deviations described in section C. JI specific approach is applied for the monitoring of GHGs emission which is based on the principles of the

"Guidance on criteria for baseline setting and monitoring" (Version 02)

Project boundaries include (Diagram B.2.1 and B.2.2 below):

- By-product coke plant
- Blast-furnace plant: BF #4, 6, 9, 10, 2
- Sintering plants #2, 3
- Own power generation capacities of MMK: Combined heat power plant (CHPP), Central power plant (CPP), Steam-air blowing power plant (SABPP), turbine section in the steam plant, gas recovery section in the steam plant

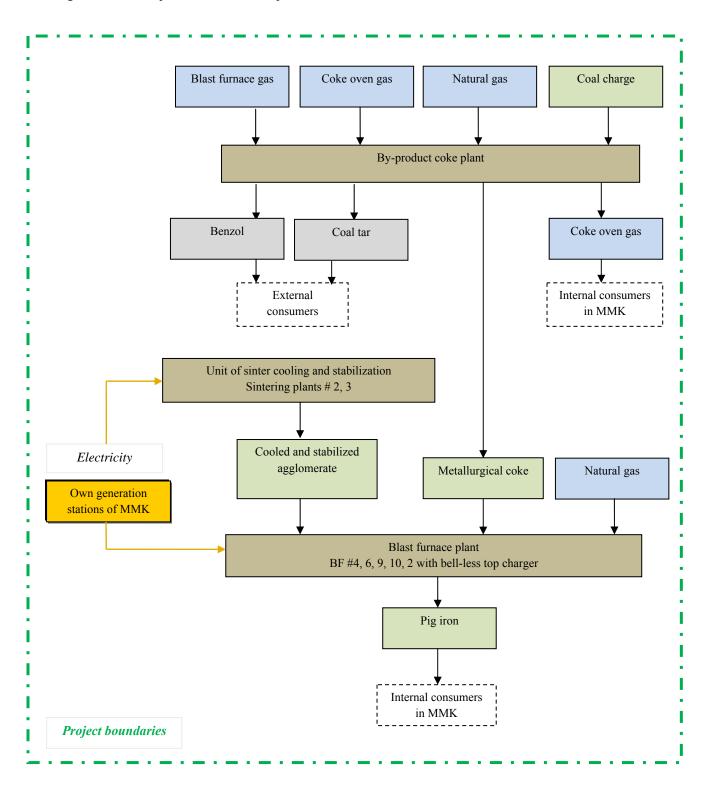


Diagram B.2.1: Project boundaries. Project scenario.

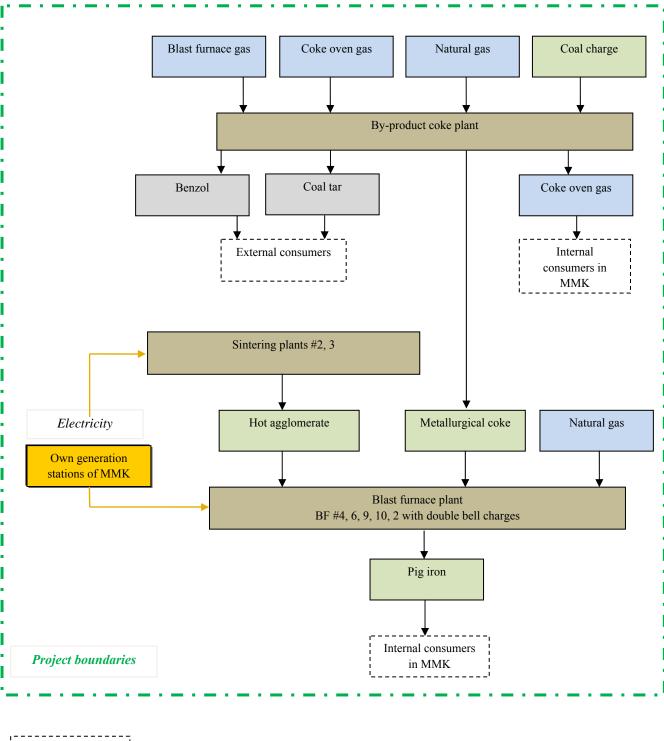
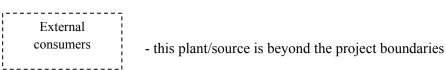



Diagram B.2.2: Project boundaries. Baseline scenario.

To calculate the project CO₂ emissions the following approach is applied:

- 1. Based on technical reports of Blast Furnace Plant the actual consumption of dry skip metallurgical coke and natural gas in BF #4, 6, 9, 10, 2 is determined. If production of pig iron in the project would exceed a maximum output of pig iron by BF #4, 6, 9, 10, 2 in the baseline scenario, the consumption of coke and natural gas will be mathematically reduced and not be considered for production of supplementary amount of pig iron in the project. Based on actual carbon content in metallurgical coke and natural gas the CO₂ emissions from consumption of dry skip metallurgical coke and natural gas at BF #4,6,9,10, 2 are calculated.
- 2. The emissions from production of coke consumed at BF #4, 6, 9, 10, 2 (dry skip metallurgical coke) are calculated on the basis of specific CO₂ emission factor per ton of metallurgical coke produced by BPCP. This emission factor is calculated by carbon balance for coke production at BPCP, as described in PDD "Implementation of arc-furnace steelmaking at Magnitogorsk Iron and Steel Works". This PDD had been determined by Accredited Independent Entity Bureau Veritas² (Annex 3 describes calculation methods).
- 3. The next step is calculation of CO₂ emissions from consumption of electricity by SCaSUs at sintering plant #2, 3 and CO₂ emissions from consumption of electricity for production of pure nitrogen required to cool down the BLT reduction gear at BF #4, 6, 9, 10, 2. The basis for that are actual consumption of electricity by SCaSU at the sintering plants #2 and #3 and the consumption of electricity for production of consumed pure nitrogen (no mathematic reduction depending on the iron production is done for conservativeness reason) and CO₂ emission factor for electricity produced at MMK, as described in PDD "Implementation of arc-furnace steelmaking at Magnitogorsk Iron and Steel Works". This PDD had been determined by Accredited Independent Entity Bureau Veritas (Annex 4 describes calculation methods).
- 4. Finally, total project CO₂ emissions are summed up.

Consumption of production inputs, raw materials, energy resources, and output of commercial products are routinely monitored at MMK by the system of corporate monitoring and reporting. These parameters are measured in accordance with applicable standards and rules of iron and steel industry of Russia, and international standards (MMK is certified under ISO 9001 standard). There are no any new parameters which would require to change the existing system of corporate accounting.

The majority of measured indicators required for CO_2 emission monitoring are regularly measured by direct analyses in Central Lab of MMK or calculated on the basis of chemical composition of carbon-containing substances (composition of natural gas is taken from its technical passport, issued by the supplier).

²http://ji.unfccc.int/JI_Projects/DB/3YOHME3FSIKG8602M8WN9D60QNIQT7/PublicPDD/YAGHLX0KYONQCE VWW7EHHU3EW75Z32/view.html

Tp calculate the baseline CO₂ emissions the following approach is applied:

- 1. Performance of the blast furnaces # 4, 6, 9, 10, 2 in the baseline is determined based on three-year period before project implementation and relevant historic parameters are fixed ex-ante. The annual technical reports of blast furnace plant of MMK for the period of 2004-2006 (i.e. before installation of the SCaSUs and bell-less top chargers) are used to determine a consumption of skip metallurgical coke (on dry mass) and natural gas as well as pig iron production by blast furnaces # 4, 6, 9, 10, 2. These data were used to calculate and fix ex-ante the average specific consumption of skip metallurgical coke and NG per ton of pig iron produced by each of these furnaces in the baseline.
- Since actual production of pig iron in the project may be higher than in comparison period of 2004-2006 and no changes of the working volume of the blast furnaces were done, the historical maximal output of BF #4 and # 9 (date of 1988 year), BF #6 (date of 1990 year), BF #10 (date of 1987) BF #2 (average value of historical data for the period of 2004-2006) equipped with double bell charges has been determined.
- 3. On the basis of actual pig iron production (which is limited for the baseline by maximal output of BF # 4, 6, 9, 10, 2) and average specific consumption of dry skip metallurgical coke and NG per ton of pig iron produced in the baseline the gross consumption of dry skip metallurgical coke and natural gas is calculated for each of the furnace. Based on these data and taking into account the actual carbon content in metallurgical coke and natural gas the total CO₂ emissions from consumption of dry skip metallurgical coke and natural gas at BF #4,6,9,10, 2 in the baseline are calculated.
- 4. Based on data of consumption of dry skip metallurgical coke by BF #4, 6, 9, 10, 2 in the baseline and specific CO₂ emission factor per ton of metallurgical coke produced in BPCP the emissions from consumed coke production are calculated. The CO₂ emission factor per ton of metallurgical coke is calculated as described in PDD "Implementation of arc-furnace steelmaking at Magnitogorsk Iron and Steel Works". This PDD had been determined by Accredited Independent Entity Bureau Veritas³ (Annex 3 describes calculation methods).
- 5. Finally total baseline CO₂ emissions are calculated.

Table B.2.1. Parameters for calculation of the project and baseline emissions that are fixed ex-ante

#	Data variable and unit	Notation	Value	Data source
1.	Maximum production of pig iron by BF #4 in the baseline, th. t	P max pig iron BF 4 BL	1217,400	Maximum output of BF #4 reached in 1988. Data from technical reports of blast furnace plant of Magnitogorsk metallurgical works here and in rows beneath.
2.	Maximum production of pig iron by BF #6 in the baseline, th. t	P max pig iron BF 6 BL	1110,700	Maximum output of BF #6 reached in 1990.
3.	Maximum production of pig iron by BF #9 in the baseline, th. t	P max pig iron BF 9 BL	1768,0	Maximum output of BF #9 reached in 1988.
4.	Maximum production of pig iron by BF #2 in the baseline, th. t	P max pig iron BF 2 BL	1182,901	Averaged value based on historical data for 2004-2006
5.	Maximum production of pig iron	P max pig iron BF	1789,60	Maximum output of BF #10

³http://ji.unfccc.int/JI_Projects/DB/3YOHME3FSIKG8602M8WN9D60QNIQT7/PublicPDD/YAGHLX0KYONQCE VWW7EHHU3EW75Z32/view.html

by BF #10 in the baseline, th. t	10 BL	reached in 1987

12

Table B.2.3. Parameters	for calculation	of the baseline	emissions on	ly fixed ex-ante ⁴

№	Data variable and unit	Notation	Value	Data source
1.	Consumption of dry skip metallurgical coke in BF #4 under the baseline, averaged over 2004- 2006, t	M skip metallurgical_coke_BF 4 averaged BL	481 348	Averaged value based on historical data for 2004-2006
2.	Production of pig iron in BF #4 in the baseline, t	P pig iron BF 4 averaged BL	1011,173	
3.	Consumption of NG in BF #4 in the baseline, th. m3/year	FC NG_BF 4 averaged BL	103 017	
4.	Consumption of dry skip metallurgical coke in BF #6 in the baseline, t	M skip metallurgical_coke_BF 6 averaged BL	515 482	
5.	Production of pig iron in BF #6 in the baseline, t	P pig iron BF 6 averaged BL	1089,226	
6.	Consumption of NG in BF #6 in the baseline, th. m3/year	FC NG_BF 6 averaged BL	116 505	
7.	Consumption of dry skip metallurgical coke in BF #9 under the baseline, t	M skip metallurgical_coke_BF 9 averaged BL	668 984	The same as above
8.	Production of pig iron in BF #9 in the baseline, t	P pig iron BF 9 averaged BL	1 492,464	
9.	Consumption of NG in BF #9 in the baseline, th. m3/year	FC NG_BF 9 averaged BL	142 514	
10.	Consumption of dry skip metallurgical coke in BF #2 under the baseline, t	M skip metallurgical_coke_BF 2 averaged BL	552 198	The same as above
11.	Production of pig iron in BF #2 in the baseline, t	P pig iron BF 2 averaged BL	1 182,901	
12.	Consumption of NG in BF #2 in the baseline, th. m3/year	FC NG_BF 2 averaged BL	123 167	
13.	Consumption of dry skip metallurgical coke in BF #10 under the baseline, t	M skip metallurgical_coke_BF 10 averaged BL	661 148	
14.	Production of pig iron in BF #10 in	P pig iron BF 10 averaged BL	1 525,061	

⁴ Evidence for these parameters were provided in the PDD determination and are available on MMK on demand

	the baseline, t			
15.	Consumption of NG in BF #10 in the baseline, th. m3/year	FC NG_BF 10 averaged BL	131 324	
16.	Specific consumption of dry skip metallurgical coke in BF #4, kg/t	SM skip metallurgical_coke_BF 4 averaged BL	476,0	The same as above
17.	Specific consumption of NG in BF #4, m3/t	SFC NG_BF 4 averaged BL	101,9	
18.	Specific consumption of dry skip metallurgical coke in BF #6, kg/t	SM skip metallurgical_coke_BF 6 averaged BL	473,3	
19.	Specific consumption of NG in BF #6, m3/t	SFC NG_BF 6 averaged BL	107,0	
20.	Specific consumption of dry skip metallurgical coke in BF #9, kg/t	SM skip metallurgical_coke_BF 9 averaged BL	448,2	
21.	Specific consumption of NG in BF #9, m3/t	SFC NG_BF 9 averaged BL	95,5	
22.	Specific consumption of dry skip metallurgical coke in BF #2, kg/t	SM skip metallurgical_coke_BF 2 averaged BL	466,8	
23.	Specific consumption of NG in BF #2, m3/t	SFC NG_BF 2 averaged BL	104,1	
24.	Specific consumption of dry skip metallurgical coke in BF #10, kg/t	SM skip metallurgical_coke_BF 10 averaged BL	433,5	
25.	Specific consumption of NG in BF #10, m3/t	SFC NG_BF 10 averaged BL	86,1	

B.3 Approach for organization and implementation of monitoring

It should be noted that OJSC "MMK" had monitored all parameters used in the monitoring plan before development and determination the PDD but the specialized corporate procedure for the monitoring organization for the Joint Implementation project was adopted at MMK in February 2010 (PD MMK 3-SSGO-01-2010 "Regulation on monitoring of GHG emissions reduction, created as a result of the realization of the project: "Implementation of arc-furnace steelmaking at Magnitogorsk Iron and Steel Works"), i.e. after approval of the project by an independent accredited entity.

Therefore the monitoring results for 2009 are based on reporting system existed prior to this point in time which is the same as nowadays with only exception of the involvement of Department for relations with state authorities and markets protection. Hereby all relevant monitoring information was collected and stored with accordance with MMK corporate rules and regulations but was not qualified as related to JI project boundaries. The mentioned internal Regulation MMK 3-SSGO-01-2010 has been designed to establish a clear and transparent set of authorities and responsibilities for identification of monitoring parameters, timely transfer of relevant reporting forms to MMK JI coordinator and to external consultant (CTF Consulting, LLC) and creation of provisions for secure long-term conservation of monitoring data in accordance with international requirements to JI.

The reporting forms of MMK departments used for monitoring of JI project "Implementation of arc-furnace steelmaking at Magnitogorsk Iron and Steel Works" and considered project "Implementation of modern technologies of sinter production and blast furnaces charging at OJSC "MMK" are the same.

Monitoring of greenhouse gases emission reduction is carried out at OJSC "MMK" based on continuous monitoring of the monitoring parameters (Table B.3.1) specified in the PDD. Monitoring report is subject for verification. A reference about monitoring of each parameter is presented as informational matrix of the approved form. The data relating to the monitoring of the project is posted on a dedicated server of OJSC "MMK".

Departments responsible for monitoring of each parameter in the JI project carry a responsibility for the treatment of primary reporting documents, processing, preparation, verification and transfer to the Department for relations with state authorities and markets protection (JI project implementation coordinator) of the reporting documents containing the information about monitored parameters. In each department of OJSC "MMK" involved in monitoring under the JI project the head of the department assigns a person responsible for provision of the reporting documents and tracking of the parameters change.

Picture B.3.1. Management structure of monitoring process

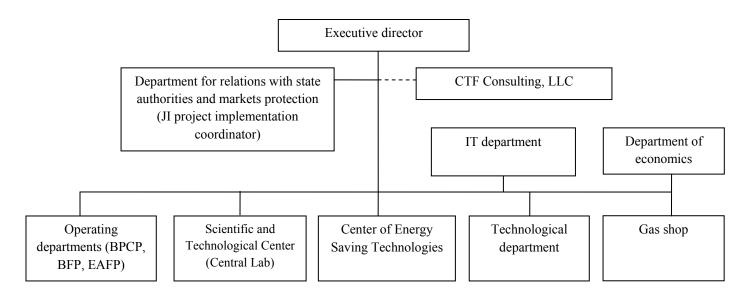


Table B.3.1. Responsibility of departments for monitoring parameters

#	Department	Monitoring parameter		
1.	Blast-furnace plant	 Consumption of dry skip metallurgical coke in BF #4, 6, 9, 10, 2 		
		2. Consumption of pure nitrogen in BF #4, 6, 9, 10, 2		
		3. Production of pig iron in BF # 4, 6, 9, 10, 2		
2.	Central Laboratory of Control (as part of Scientific and Technological Center)	4. Carbon content in dry metallurgical coke		
3.	Gas shop	5. Carbon content in natural gas		
4.	Technological department	 Consumption of electricity by SCaSU at sintering plant #2 		
		 Consumption of electricity by SCaSU at sintering plant #3 		
5.	Center of Energy Saving Technologies	8. Consumption of natural gas in BF#4, 6, 9, 10, 2		

The periodicity of data transfer by structural departments of OJSC "MMK" is monthly within 5 working days after their preparation and approval of paper form. Submission of the reports to Department for relations with state authorities and markets protection is performed by responsible person in electronic form. Responsible person from department prepares documents containing information about monitoring parameters in electronic format *.doc, *.xls, *.pdf, *.jpeg (depending the type of the document, see Table B.3.2). From e-mail address assigned for each department these files are sent to the e-mail address of Department of informational technologies that is registered as a resource for the monitoring of the project "Implementation of arc-furnace steelmaking at OJSC "MMK". Then received files are placed on the server of OJSC "MMK". Read access to this server is provided to users on the basis of an application for access to information resource. Editing rights of the electronic documents are restricted. Approved reported documents in paper form are stored in accordance with procedure existing in each department.

Storage of all records on monitoring for JI project (describing the period from January 1, 2008 to December 31, 2012) in electronic form is provided until January 1, 2015 by Department for relations with state authorities and markets protection.

Department for relations with state authorities and markets protection controls the completeness of the data and the term of data transfer. Every quarter all the relevant data are transferred to CTF Consulting, LLC. (consultant for the project) by e-mail. Similarly the information matrix of parameters, which were changed and other important information is sent to CTF Consulting, LLC in order that relevant definitions are made during a preparation of the monitoring report.

Within 10 working days after receipt of the complete set of reporting forms the specialists of CTF Consulting, LLC calculate CO_2 emission reduction achieved by JI project for each quarter. The results of calculation are reported to the Department for relations with state authorities and markets protection.

CTF Consulting, LLC develops for OJSC "MMK" the annual monitoring report on CO_2 emission reduction based on quarterly reporting upon receipt of the reporting for 4th quarter. The monitoring report is sent then to Department for relations with state authorities and markets protection, which submits it for consideration of relevant departments. Department of Economics of MMK has to compare the figures contained in the monitoring report on consumption of raw materials and manufacture of products with Calculation of prime costs and confirm their compliance. Annual monitoring report is approved by Executive Director of MMK.

#	Department	The name of the reporting documents fixed in the Quality Management System (QMS)	Format of electronic from
1.	Blast-furnace plant	Technical repot of blast-furnace plant	.XLS
2.	Central Laboratory of Control in structure of Scientific and Technological Center	Carbon content in dry coal charge and metallurgical coke of BPCP of OJSCC "MMK". Monthly average data	.JPEG (scanned tables signed by the head of Central laboratory)
3.	Department of plant engineering, gas shop	Natural gas quality passport (provided by supplier)	.PDF/.JPEG (scanned passport of NG)
4.	Technological department	Report on electricity consumption by MMK departments	.XLS

Table B 3.2. List of reporting documents prepared by departments of OJSC "MMK", which are used in project monitoring

According to PDD version 1.4 dated September, 29 2010 two monitoring parameters (listed in the table below) are calculated by consultant as a part of monitoring of the JI project "Implementation of arc-furnaces steelmaking at Magnitogorsk iron and steel works"⁵.

5

http://ji.unfccc.int/JI_Projects/DB/3YOHME3FSIKG8602M8WN9D60QNIQT7/PublicPDD/YAGHLX0KYONQCEV WW7EHHU3EW75Z32/view.html

#	Data variable and unit	Notation	Value	Data source, remarks
1.	Specific CO ₂ emissions per ton of produced metallurgical coke, t CO ₂ /t	SPE metallurgical_coke	2009 - 0,966 t CO ₂ /t 2010 - 0,955 t CO ₂ /t	Calculation model for monitoring report for the JI project "Implementation of arc-furnace technology at Magnitogorsk iron
2.	CO ₂ emission factor for electricity produced by own generating capacities of MMK, t CO ₂ /MWh	EF own generation_PJ	2009 - 0,895 t CO ₂ /MWh 2010 - 0,920 t CO ₂ /MWh	and steel works» ⁶ , developed by CTF Consulting, LLC which is a subject of annual verification.

Table B 3.3. Monitoring parameters, calculated by consultant in 2009-2010

B.5 Technical	means of	measurements	and its	accuracy

#	Monitoring parameter	Measuring device	Inaccuracy of measurements
1.	Consumption of dry metallurgical coke in BF #4, 6, 9, 2, 10	Weighting funnels with strain sensor VDD6-0.5. Besides humidity is measured to recalculate on dry mass	1%
2.	Production of pig iron in BFP №#4,6,9,2,10	Railway scales	0,3-1% depending on the scales type
3.	Consumption of NG in BF #4,6,9,2,10	 Pressure differential flow meters Yokogava Eja110a measure flows of NG in BFP, CHPP, CPP, SABPP and the turbine section of the steam plant. Then the consumption of natural gas is calculated by SPG-762 calculator. 	1%
4.	Consumption of pure nitrogen in BF #4,6,9,2,10	Gas flow meter	1%
5.	Carbon content in dry metallurgical coke	Carbon analyzer LECO SC144DR	0,25%
6.	Carbon content in NG	Component composition of NG is specified in technical passport by the supplier. Carbon content is then estimated on the basis of that measured composition of gas	0,5%
7.	Consumption of ectricity by SCaSUs at sintering plants #2, 3	Active and reactive electricity meters. Meter type: active electricity meter C6805V, f.66B-01, active electricity meter SAZU-I670M; reactive electricity meter SR4U-I673M, f.66B-01 reactive electricity meter SAZU-I670D.	0,5%; 2,0% (it depends on meter type)

C. Adjustments and deviations from the monitoring plan presented in PDD

Some adjustments and deviations were made in the monitoring plan presented in section D of PDD, version 1.4 from September 29, 2010 (this version of PDD has been determined by Bureau Veritas Certification Holding SAS N RUSSIA-det/0084/2010. Expert opinion of October 20, 2010). The changes have been made for monitoring plan adaptation and representation the actually existing situation. Another monitoring parameters and calculation formulae are in compliance with PDD.

Mentioned in PDD	Implemented in practice	Explanation
Table D.1.1.1. Parameter %C metallurgical coke PJ -	BPCP lab of OJSC "MMK" did not perform	A deviation in average values of carbon content in
Carbon content in the metallurgical coke	systematic measurements of carbon content in coal	metallurgical coke (on dry weight) was less than 1%
Recording frequency – 2 times a day	charge in January 2009 due to replacement of the old	by mass in the period from February 2009 to
	measuring device on a new one (carbon analyzer	December 2009, which suggests a stable composition
Averaged over sample measurements.	LECO SC144DR), which entailed the development	of the coal charge loaded into the coke ovens. It is
	and approval of new measurements methodologies	achieved by pre-mixing of different types of coking
	and staffed training.	coal before it is fed to the ovens. This is a common
		practice of the enterprise.
	Therefore in the calculations the value of the carbon	
	content in dry coal charge for January 2009 was	In the 2006 IPCC Guidelines for National
	taken as for February 2009 (83,39 % by mass.).	Greenhouse Gas Inventories Chapter 4. Table 4.3.the
		standard value for carbon content in metallurgical
		coke is 83 % by mass, which is quite close to the
		taken value of 83,51% by mass and therefore taking
		into account the import of CO ₂ emission factor for
		metallurgical coke production from calculation
		model for monitoring report for the JI project
		"Implementation of arc-furnace technology at
		Magnitogorsk iron and steel works» (where also for
		January 2009 the average value for February 2009 –
		December 2009 was taken) such action is reasonable
		as the difference in ERUs for 2009 while taking each
		of the mentioned values would be less than 100 tones
		CO_{2eq} , which is immaterial.

Specific CO ₂ emissions per ton of produced metallurgical coke SPE metallurgical coke = PE metallurgical coke / P metallurgical coke_PJ (D.1.1.22) Where: SPE metallurgical_coke - Specific CO2 emissions per ton of dry metallurgical coke produced in BPCP, t CO2/t PE metallurgical_coke - Project emissions from production of metallurgical coke in BPCP, th. t of CO2 P metallurgical coke_PJ - Production of dry metallurgical coke, th. t	The monitoring plan means that OJSC "MMK" fully meets their requirements for metallurgical coke, which was the practice in recent years. However in 2nd and 3rd quarters of 2009 OJSC "MMK" purchased a part of required metallurgical coke from other coke producers by reason of shut down of several coke batteries at the end of 2008 (due to the global economic and financial crisis). Thereby the value of specific CO_2 emissions per ton of dry metallurgical coke produced in BPCP was assumed to be the same for own produced and purchased coke since other producers of coke have not lesser carbon intensity during its production.	Mentioned deviation in the calculation model have been illustrated in section E.1 of PDD and approved by independent accredited entity during determination.
PE _{coke, NG} for BF4 reduced – Project emissions from consumption of dry skip metallurgical coke in BF #4, production of this metallurgical coke in BPCP, consumption of NG in BF #4, reduced, th. tones CO_2 . PE _{EC CSU AF 2.3} – CO_2 project emissions from electricity consumption by SCaSU, th. tones CO_2 . PE _{EC} – Total project CO_2 emissions from electricity consumption, th. tones CO_2 PE _{EC} – Total project CO_2 emissions from electricity consumption, th. tones CO_2 PE _{EC} – Total project CO_2 emissions from electricity consumption, th. tones CO_2 BE _{coke, NG} for BF4 – Baseline emissions from consumption of dry skip metallurgical coke in BF #4, production of this metallurgical coke in BPCP, consumption of NG in BF #4, th. tones CO_2 BE – Baseline CO2 emissions, th. tones CO_2	The dimensionality of the value of CO ₂ emissions has been changed from "thousand tones CO ₂ " to "tones CO ₂ " in the formulae D.1.1.21 , D.1.1.25 , D.1.1.29 , D.1.1.213 , D.1.1.217 , D.1.1.221 , D.1.1.225 , D.1.1.226 , D.1.1.41 , D.1.1.45 , D.1.1.49 , D.1.1.413 , D.1.1.417 , D.1.1.421	It was done to provide consistency throughout of the Monitoring report.

D. Calculation of GHG emissions reduction

D.1 PROJECT EMISSIONS

Production of pig iron

1) Total reduced emissions from consumption of dry skip metallurgical coke in BF #4, production of this metallurgical coke in BPCP, consumption of NG in BF #4

PE coke, NG for BF4 reduced = M skip metallurgical coke_BF4 reduced PJ * %C metallurgical coke_PJ /100 * 44/12 + M skip metallurgical coke_BF4 reduced PJ * SPE metallurgical coke + FC NG_BF4 reduced PJ * C NG PJ * 44/12 (PDD formula D.1.1.2.-1)

M skip metallurgical coke_BF 4 reduced PJ = M skip metallurgical coke_BF 4 PJ * K1

 $K_1 = 1 \text{ если } P_{pig iron BF 4 PJ} \ll P_{max pig iron BF 4 BL}$ $K_1 = P_{max pig iron BF 4 BL} / P_{pig iron BF 4 PJ} \text{ if } P_{pig iron BF 4 PJ} > P_{max pig iron BF 4 BL}$

FC $_{NG_{BF4}reduced PJ} = FC _{NG_{BF4}PJ} * K_1$

Notation	Data variable	Unit	Notation	Data variable	Unit	Notation	Data variable	Unit
PE coke, NG for BF4 reduced	Project emissions from consumption of dry skip metallurgical coke in BF #4, production of this metallurgical coke in BPCP, consumption of NG in BF #4, reduced	tones CO ₂	%C metallurgical coke_PJ	Carbon content in metallurgical coke	% by weight	FC _{NG BF 4} reduced PJ	Project consumption of NG in BF #4, reduced	th. m3
M skip metallurgical coke_BF 4 reduced PJ	Project consumption of dry skip metallurgical coke in BF #4, reduced	tones	SPE metallurgical_coke	Specific CO ₂ emissions per ton of dry metallurgical coke produced in BPCP	tons CO2/t	C _{NG_PJ}	Carbon content in NG	kgC/ m3

(PDD formula D.1.1.2.-4)

(PDD formula D.1.1.2.-3)

(PDD formula D.1.1.2.-2)

M skip metallurgical coke _BF 4 PJ	Project emissions from consumption of dry skip metallurgical coke in BF #4	tones	K ₁	Project adjustment coefficient for BF #4	-	P max pig iron BF 4 BL	Maximum production of pig iron in BF #4 under the baseline scenario (1217.4 thousand tons in 1988)	tones
P pig iron BF 4 PJ	Project production of pig iron in BF #4	tones	FC NG_BF 4 PJ	Project consumption of NG in BF #4	th. m3			

Consumption of coke, NG and pig iron production in 2009 in BF #4, maximum production of pig iron by BF #4 and adjustment coefficient K1

#	Name	Unit	Jan.	Feb.	March	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of dry skip metallurgical coke actual	tones	42 104	40 298	45 059	45 431	42 637	46 840	44 729	47 618	47 244	44 760	45 424	44 573	536 718
2	Consumption of NG actual	th. m ³	10 374	10 010	12 311	12 656	11 351	11 448	10 982	12 169	12 241	11 757	11 990	10 962	138 251
3	Pig iron production	tones	93 083	91 864	102 832	104 208	98 098	107 791	103 326	109 454	108 672	103 675	104 810	102 081	1 229 894
4	Maximum production of pig iron in BF#4 (historical data of 1988)	tones	1 217 400												
5	Adjustment coefficient K1		0,990												

CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #4 (reduced)

#	Name	Unit	Jan.	Feb.	March	Apr.	Мау	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of dry skip metallurgical coke (reduced)	tones	41 677	39 889	44 601	44 969	42 204	46 364	44 275	47 134	46 764	44 305	44 963	44 120	531 266
2	Carbon contant in dry akin cake	%	83,39	83,39	84,02	83,39	83,41	83,31	83,43	83,64	83,40	83,84	83,63	83,10	83,50
2	Carbon content in dry skip coke	tones C	34 754	33 263	37 474	37 500	35 202	38 626	36 938	39 423	39 001	37 146	37 602	36 664	443 595
3	Consumption of NG (reduced)	th. m ³	10269	9 908	12 186	12 527	11 236	11 332	10 870	12 045	12 117	11 638	11 868	10 851	136 847
4	Carbon content in NG	kg C/m ³	0,50	0,50	0,50	0,50	0,50	0,50	0,49	0,49	0,49	0,49	0,49	0,50	0,50
4	Carbon content in NG	tones C	5085	4 906	6 033	6 201	5 562	5 612	5 381	5 962	5 995	5 760	5 874	5 372	67 743
5	CO2 emissions from coke production in BPCP (reduced)	tones CO ₂	40279	38 551	43 105	43 461	40 788	44 809	42 789	45 553	45 195	42 819	43 455	42 640	513 444
6	CO2 emissions from coke consumption in BF #4 (reduced)	tones CO ₂	127432	121965	137405	137500	129075	141629	135441	144551	143005	136200	137876	134435	1626514

7	CO2 emissions from NG consumption in BF #4 (reduced)	tones CO ₂	18646	17987	22122	22738	20394	20576	19729	21861	21983	21118	21539	19696	248390
8	CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #4 (reduced)	tones CO ₂	186 356	178 503	202 633	203 699	190 257	207 014	197 959	211 966	210 183	200 138	202 870	196 771	2 388 348

Consumption of coke, NG and pig iron production in 2010 in BF #4, maximum production of pig iron by BF #4 and adjustment coefficient K1

#	Name	Unit	Jan.	Feb.	March	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of dry skip metallurgical coke actual	tones	27 799	42 548	48 107	45 851	40 846	42 262	43 576	41 811	44 465	46 331	47 147	46 648	517 391
2	Consumption of NG actual	th. m ³	5 408	9 454	12 125	12 199	11 002	11 577	12 427	11 417	10 391	11 871	11 808	11 773	131 452
3	Pig iron production	tones	56 779	91 705	109 292	105 352	93 825	97 630	100 784	93 708	95 393	103 782	105 154	104 556	1 157 960
4	Maximum production of pig iron in BF#4 (historical data of 1988)	tones	1 217 400												
5	Adjustment coefficient K1		1,000												

CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #4 (reduced)

#	Name	Unit	Jan.	Feb.	March	Apr.	Мау	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of dry skip metallurgical coke (reduced)	tones	27 799	42 549	48 107	45 851	40 846	42 262	43 576	41 811	44 465	46 331	47 147	46 648	517 392
2	Carbon content in dry skip coke	% by mass	83,05	82,60	83,20	83,50	83,30	83,00	82,96	82,94	82,80	82,90	82,90	83,00	83,01
2	Carbon content in dry skip coke	tones C	23 087	35 145	40 025	38 286	34 025	35 077	36 150	34 677	36 817	38 408	39 085	38 718	429 498
3	Consumption of NG (reduced)	th. m ³	5 408	9 454	12 125	12 199	11 002	11 577	12 427	11 417	10 391	11 871	11 808	11 773	131 452
4	Carbon content in NG	kg C/m ³	0,50	0,50	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49
4	Carbon content in NG	tones C	2 677	4 680	5 999	6 036	5 441	5 726	6 148	5 644	5 136	5 871	5 841	5 825	65 025
5	CO2 emissions from coke production in BPCP (reduced)	tones CO ₂	27 664	42 343	47 874	45 629	40 648	42 057	43 365	41 608	44 249	46 106	46 918	46 422	514 882
6	CO2 emissions from coke consumption in BF #4 (reduced)	tones CO ₂	84 653	128 867	146 758	140 380	124 757	128 617	132 549	127 148	134 996	140 831	143 311	141 965	1 574 833

.	/	CO2 emissions from NG consumption in BF #4 (reduced)	tones CO ₂	9 817	17 160	21 996	22 133	19 952	20 995	22 541	20 694	18 832	21 528	21 419	21 360	238 425
;	B	CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #4 (reduced)	tones CO ₂	122 133	188 370	216 628	208 142	185 357	191 669	198 455	189 450	198 077	208 465	211 648	209 747	2 328 140

NG in BF #6

PE coke, NG for BF6 reduced = M skip metallurgical coke BF 6 reduced PJ * %C metallurgical coke PJ /100 * 44/12 + M skip metallurgical coke BF 6 reduced PJ * SPE metallurgical coke + FC NG BF 6 reduced _{PJ} * C _{NG PJ} * 44/12 (PDD formula D.1.1.2.-5)

M skip metallurgical coke BF 6 reduced PJ = M skip metallurgical coke BF 6 PJ * K_2

K₂ = 1 если Р _{pig iron BF 6 PJ} <= Р _{max pig iron BF 6 BL} $K_2 = P_{max pig iron BF 6 BL} / P_{pig iron BF 6 PJ}$ if $P_{pig iron BF 6 PJ} > P_{max pig iron BF 6 BL}$

FC NG BF 6 reduced PJ = FC NG BF 6 PJ \star K2

(PDD formula D.1.1.2.-8)

Notation	Data variable	Unit	Notation	Data variable	Unit	Notation	Data variable	Unit
PE coke, NG for BF6 reduced	Project emissions from consumption of dry skip metallurgical coke in BF #6, production of this metallurgical coke in BPCP, consumption of NG in BF #6, reduced	tones CO ₂	FC _{NG BF 6} reduced PJ	Project consumption of NG in BF #6, reduced	th. m3	M skip metallurgical coke_BF 6 reduced PJ	Project consumption of dry skip metallurgical coke in BF #6, reduced	tones
M skip metallurgical coke _BF 6 PJ	Project emissions from consumption of dry skip metallurgical coke in BF #6	tones	K ₂	Project adjustment coefficient for BF #6	-	P max pig iron BF 6 BL	Maximum production of pig iron in BF #6 under the baseline scenario (1110,7 thousand tons in 1990)	tones
P pig iron BF 6 PJ	Project production of pig iron in BF #6	tones	FC NG_BF 6 PJ	Project consumption of NG in BF #6	th. m3			

(PDD formula D.1.1.2.-6)

(PDD formula D.1.1.2.-7)

25

Consumption of coke, NG and pig iron production in 2009 in BF #6, maximum production of pig iron by BF #6 and adjustment coefficient K2

#	Name	Unit	Jan.	Feb.	March	Apr.	Мау	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of dry skip metallurgical coke actual	tones	35 233	34 928	39 761	37 640	36 320	36 736	41 079	38 864	40 927	42 569	39 513	40 522	464 091
2	Consumption of NG actual	th. m ³	7 698	9 947	11 649	10 094	9 250	10 435	11 339	10 952	9 902	10 653	10 171	10 076	122 163
3	Pig iron production	tones	76 728	79 563	91 157	85 735	82 139	84 025	94 248	89 220	93 699	97 821	90 702	92 460	1 057 495
4	Maximum production of pig iron in BF#6 (historical data of 1990)	tones													
5	Adjustment coefficient K2		25 1 110 700 1,000												

CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #6 (reduced)

#	Name	Unit	Jan.	Feb.	March	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of dry skip metallurgical coke (reduced)	tones	35 233	34 928	39 761	37 640	36 320	36 736	41 079	38 864	40 927	42 569	39 513	40 522	464 091
2	Carbon contant in dry skin coko	%	83,39	83,39	84,02	83,39	83,41	83,31	83,43	83,64	83,40	83,84	83,63	83,10	83,50
2	Carbon content in dry skip coke	tones C	29 380	29 126	33 407	31 388	30 295	30 605	34 272	32 506	34 133	35 690	33 045	33 673	387 520
3	Consumption of NG (reduced)	th. m ³	7 698	9 947	11 649	10 094	9 250	10 435	11 339	10 952	9 902	10 653	10 171	10 076	122 163
4	Carbon content in NG	kg C/m ³	0,50	0,50	0,50	0,50	0,50	0,50	0,49	0,49	0,49	0,49	0,49	0,50	0,50
4	Carbon content in NG	tones C	3 812	4 925	5 768	4 997	4 579	5 167	5 612	5 421	4 899	5 272	5 034	4 988	60 474
5	CO2 emissions from coke production in BPCP (reduced)	tones CO ₂	34 051	33 756	38 427	36 377	35 102	35 504	39 701	37 560	39 554	41 141	38 187	39 162	448 522
6	CO2 emissions from coke consumption in BF #6 (reduced)	tones CO ₂	107 728	106 796	122 494	115 089	111 080	112 217	125 665	119 188	125 155	130 863	121 164	123 469	1 420 907
7	CO2 emissions from NG consumption in BF #6 (reduced)	tones CO ₂	13 977	18 057	21 148	18 321	16 789	18 947	20 578	19 876	17 964	19 331	18 459	18 289	221 737
8	CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #6 (reduced)	tones CO ₂	155 756	158 608	182 068	169 787	162 971	166 668	185 944	176 625	182 673	191 335	177 810	180 920	2 091 167

12 месяцев 2010 г.

Consumption of coke, NG and pig i	on production in 2010 in BF #6	. maximum production of pig in	on by BF #6 and ad	iustment coefficient K2

#	Name	Unit	Jan.	Feb.	March	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of dry skip metallurgical coke actual	tones	39 337	38 458	41 755	38 576	31 476	0	0	8 877	44 523	45 449	45 591	42 812	376 854
2	Consumption of NG actual	th. m ³	9 031	9 010	9 935	9 565	6 618	0	0	1 066	7 281	11 721	11 800	10 888	86 915
3	Pig iron production	tones	86 964	85 306	92 852	86 680	71 466	0	0	14 351	95 200	101 533	102 293	95 330	831 975
4	Maximum production of pig iron in BF#6 (historical data of 1990)	tones													
5	Adjustment coefficient K2		1 110 700 1,000												

CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #6 (reduced)

#	Name	Unit	Jan.	Feb.	March	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of dry skip metallurgical coke (reduced)	tones	39 337	38 458	41 755	38 576	31 476	0	0	8 877	44 523	45 449	45 591	42 812	376 854
2	Carbon contant in dry skin coko	%	83,05	82,60	83,20	83,50	83,30	83,00	82,96	82,94	82,80	82,90	82,90	83,00	83,01
2	Carbon content in dry skip coke	tones C	32 669	31 766	34 740	32 211	26 220	0	0	7 362	36 865	37 677	37 795	35 534	312 834
3	Consumption of NG (reduced)	th. m ³	9 031	9 010	9 935	9 565	6 618	0	0	1 066	7 281	11 721	11 800	10 888	86 915
4	Carbon content in NG	kg C/m ³	0,50	0,50	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49
4	Carbon content in NG	tones C	4 471	4 460	4 915	4 733	3 273	0	0	527	3 599	5 797	5 838	5 387	43 000
5	CO2 emissions from coke production in BPCP (reduced)	tones CO ₂	39 146	38 271	41 552	38 389	31 323	0	0	8 834	44 307	45 229	45 370	42 604	375 026
6	CO2 emissions from coke consumption in BF #6 (reduced)	tones CO ₂	119 788	116 476	127 381	118 107	96 138	0	0	26 995	135 172	138 150	138 581	130 291	1 147 079
7	CO2 emissions from NG consumption in BF #6 (reduced)	tones CO ₂	16 393	16 354	18 023	17 354	12 002	0	0	1 932	13 196	21 256	21 404	19 754	157 667
8	CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #6 (reduced)	tones CO ₂	175 327	171 102	186 956	173 849	139 463	0	0	37 761	192 674	204 634	205 356	192 650	1 679 773

3) Total reduced emissions from consumption of dry skip metallurgical coke in BF #9, production of this metallurgical coke in BPCP, consumption of NG in BF #9

PE coke, NG for BF9 reduced = M skip metallurgical coke BF9 reduced PJ * %C metallurgical coke PJ /100 * 44/12 + M skip metallurgical coke BF9 reduced PJ * SPE metallurgical coke + FC NG BF9 reduced _{PJ} * C _{NG PJ} * 44/12 (PDD formula D.1.1.2.-9)

```
M skip metallurgical coke BF9 reduced PJ = M skip metallurgical coke BF9 PJ * K_3
```

K₃ = 1 если Р _{pig iron BF 9 PJ} <= Р _{max pig iron BF 9 BL} $K_3 = P_{\text{max pig iron BF 9 BL}} / P_{\text{pig iron BF 9 PJ}} \text{ if } P_{\text{pig iron BF 9 PJ}} > P_{\text{max pig iron BF 9 BL}}$

FC NG BF 9 reduced PJ = FC NG BF 9 PJ * K_3

Notation	Data variable	Unit	Notation	Data variable	Unit	Notation	Data variable	Unit
PE coke. NG for BF9 reduced	Project emissions from consumption of dry skip metallurgical coke in BF #9, production of this metallurgical coke in BPCP, consumption of NG in BF #9, reduced	tones CO ₂	FC NG_BF 9 reduced PJ	Project consumption of NG in BF #9, reduced	th. m3	M skip metallurgical coke_BF 9 reduced PJ	Project consumption of dry skip metallurgical coke in BF #9, reduced	tones
M _{skip} metallurgical coke _BF 9 PJ	Project emissions from consumption of dry skip metallurgical coke in BF #9	tones	К ₃	Project adjustment coefficient for BF #9	-	P max pig iron BF 9 BL	Maximum production of pig iron in BF #9 under the baseline scenario (1768,0 thousand tons in 1988)	tones
P pig iron BF 9 PJ	Project production of pig iron in BF #9	tones	FC _{NG_BF} 9 pj	Project consumption of NG in BF #9	th. m3			

(PDD formula D.1.1.2.-10)

(PDD formula D.1.1.2.-11)

(PDD formula D.1.1.2.-12)

#	Name	Unit	Jan.	Feb.	March	Apr.	Мау	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of dry skip metallurgical coke actual	tones	54 551	54 823	58 443	60 479	55 969	55 685	62 306	55 992	58 605	63 327	57 326	62 661	700 167
2	Consumption of NG actual	th. m ³	12 629	14 735	17 262	15 915	13 844	12 946	14 364	12 714	13 481	15 350	14 972	16 266	174 476
3	Pig iron production	tones	120 434	124 905	134 199	140 050	129 207	128 451	143 893	129 202	136 064	147 375	133 094	144 764	1 611 639
4	Maximum production of pig iron in BF#9 (historical data of 1988)	tones	120 434 124 905 134 199 140 050 129 207 128 451 143 893 129 202 136 064 147 375 133 094 144 764 1 611 639 1 768 000												
5	Adjustment coefficient K3								1,000						

Consumption of coke, NG and pig iron production in 2009 in BF #9, maximum production of pig iron by BF #9 and adjustment coefficient K3

CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #9 (reduced)

#	Name	Unit	Jan.	Feb.	March	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of dry skip metallurgical coke (reduced)	tones	54 551	54 823	58 443	60 479	55 969	55 685	62 306	55 992	58 605	63 327	57 326	62 661	700 167
2	Carbon contant in dry skin caka	%	83,39	83,39	84,02	83,39	83,41	83,31	83,43	83,64	83,40	83,84	83,63	83,10	83,50
2	Carbon content in dry skip coke	tones C	45 490	45 717	49 104	50 433	46 684	46 391	51 982	46 832	48 877	53 093	47 942	52 071	584 615
3	Consumption of NG (reduced)	th. m ³	12 629	14 735	17 262	15 915	13 844	12 946	14 364	12 714	13 481	15 350	14 972	16 266	174 476
4	Carbon content in NG	kg C/m ³	0,50	0,50	0,50	0,50	0,50	0,50	0,49	0,49	0,49	0,49	0,49	0,50	0,50
4	Carbon content in NG	tones C	6 254	7 295	8 547	7 878	6 853	6 411	7 110	6 293	6 670	7 597	7 411	8 053	86 370
5	CO2 emissions from coke production in BPCP (reduced)	tones CO ₂	52 721	52 984	56 482	58 450	54 091	53 817	60 216	54 114	56 639	61 203	55 403	60 559	676 679
6	CO2 emissions from coke consumption in BF #9 (reduced)	tones CO ₂	166 797	167 629	180 046	184 923	171 174	170 101	190 600	171 716	179 214	194 676	175 786	190 928	2 143 590
7	CO2 emissions from NG consumption in BF #9 (reduced)	tones CO ₂	22 931	26 749	31 337	28 886	25 127	23 507	26 069	23 076	24 456	27 854	27 174	29 526	316 692
8	CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #9 (reduced)	tones CO ₂	242 449	247 362	267 866	272 258	250 392	247 425	276 885	248 906	260 309	283 732	258 362	281 013	3 136 960

#	Name	Unit	Jan.	Feb.	March	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of dry skip metallurgical coke actual	tones	57 756	58 857	60 561	60 591	60 150	52 659	57 751	60 658	55 825	62 264	62 392	58 066	707 530
2	Consumption of NG actual	th. m ³	13 272	15 386	15 640	15 444	15 335	12 381	12 732	11 956	10 571	14 037	14 121	13 238	164 113
3	Pig iron production	tones	129 696	132 701	136 805	139 741	139 362	121 994	135 088	138 102	120 981	140 142	138 701	129 901	1 603 214
4	Maximum production of pig iron in BF#9 (historical data of 1988)	tones	129 696 132 701 136 805 139 741 139 362 121 994 135 088 138 102 120 981 140 142 138 701 129 901 1 603 214 1 768 000												
5	Adjustment coefficient K3								1,000						

Consumption of coke, NG and pig iron production in 2010 in BF #9, maximum production of pig iron by BF #9 and adjustment coefficient K3

CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #9 (reduced)

#	Name	Unit	Jan.	Feb.	March	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of dry skip metallurgical coke (reduced)	tones	57 756	58 857	60 561	60 591	60 150	52 659	57 751	60 658	55 825	62 264	62 392	58 066	707 530
2	Carbon contant in dry skin cake	%	83,05	82,60	83,20	83,50	83,30	83,00	82,96	82,94	82,80	82,90	82,90	83,00	83,01
2	Carbon content in dry skip coke	tones C	47 966	48 616	50 387	50 593	50 105	43 707	47 909	50 308	46 223	51 617	51 723	48 195	587 335
3	Consumption of NG (reduced)	th. m ³	13 272	15 386	15 640	15 444	15 335	12 381	12 732	11 956	10 571	14 037	14 121	13 238	164 113
4	Carbon content in NG	kg C/m ³	0,50	0,50	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49
4	Carbon content in NG	tones C	6 570	7 617	7 738	7 642	7 585	6 124	6 298	5 910	5 225	6 942	6 986	6 550	81 187
5	CO2 emissions from coke production in BPCP (reduced)	tones CO ₂	57 476	58 572	60 267	60 297	59 858	52 404	57 471	60 364	55 554	61 962	62 089	57 784	704 098
6	CO2 emissions from coke consumption in BF #9 (reduced)	tones CO ₂	175 877	178 258	184 751	185 509	183 718	160 259	175 667	184 462	169 485	189 262	189 651	176 714	2 153 613
7	CO2 emissions from NG consumption in BF #9 (reduced)	tones CO ₂	24 092	27 928	28 372	28 020	27 810	22 453	23 094	21 671	19 158	25 456	25 614	24 018	297 685
8	CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #9 (reduced)	tones CO ₂	257 444	264 757	273 391	273 827	271 386	235 115	256 232	266 496	244 197	276 679	277 355	258 516	3 155 396

4) Total reduced emissions from consumption of dry skip metallurgical coke in BF #2, production of this metallurgical coke in BPCP, consumption of NG in BF #2

PE coke, NG for BF2 reduced = M skip metallurgical_coke_BF2 reduced PJ * %C metallurgical coke_PJ /100 * 44/12 + M skip metallurgical coke_BF2 reduced PJ * SPE metallurgical coke_+ FC NG_BF2 reduced PJ * C NG_PJ * 44/12 (PDD formula D.1.1.2.-13)

M skip metallurgical coke_BF 2 reduced PJ = M skip metallurgical coke_BF 2 PJ * K4

 $K_4 = 1$ если $P_{pig iron BF 2 PJ} \le P_{max pig iron BF 2 BL}$ $K_4 = P_{max pig iron BF 2 BL} / P_{pig iron BF 2 PJ}$ if $P_{pig iron BF 2 PJ} > P_{max pig iron BF 2 BL}$ FC NG_BF 2 reduced PJ = FC NG_BF 2 PJ * K₄

Notation	Data variable	Unit	Notation	Data variable	Unit	Notation	Data variable	Unit
PE coke, NG for BF2 reduced	Project emissions from consumption of dry skip metallurgical coke in BF #2, production of this metallurgical coke in BPCP, consumption of NG in BF #2, reduced	tones CO ₂	FC _{NG} BF 2 reduced PJ	Project consumption of NG in BF #2, reduced	th. m3	M skip metallurgical coke_BF 2 reduced PJ	Project consumption of dry skip metallurgical coke in BF #2, reduced	tones
M skip metallurgical coke _BF 2 PJ	Project emissions from consumption of dry skip metallurgical coke in BF #2	tones	К 4	Project adjustment coefficient for BF #2	-	P max pig iron BF 2 BL	Maximum production of pig iron in BF #2 under the baseline scenario (1182,901 thousand tons averaged for period 2004- 2006)	tones
P pig iron BF 2 PJ	Project production of pig iron in BF #2	tones	FC NG_BF 2 PJ	Project consumption of NG in BF #2	th. m3			

(PDD formula D.1.1.2.-14)

(PDD formula D.1.1.2.-15)

(PDD formula D.1.1.2.-16)

Consumption of coke, NG and pig iron production in 2010 in BF #2, maximum production of pig iron by BF #2 and adjustment coefficient K4

#	Name	Unit	Jan.	Feb.	March	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of dry skip metallurgical coke actual	tones	0	0	36 129	43 455	37 930	41 033	42 277	43 520	41 589	43 801	45 969	47 737	423 440
2	Consumption of NG actual	th. m ³	0	0	7 079	11 971	9 368	10 624	11 617	11 363	9 734	11 616	12 546	12 509	108 427
3	Pig iron production	tones	0	0	75 297	99 893	87 156	95 968	99 458	99 748	90 328	98 870	102 478	107 382	956 578
4	Maximum production of pig iron in BF#2 (averaged 2005-2009) tones		1 182 901												
5	Adjustment coefficient K4		1,000												

CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #2 (reduced)

#	Name	Unit	Jan.	Feb.	March	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of dry skip metallurgical coke (reduced)	tones	0	0	36 129	43 455	37 930	41 033	42 277	43 520	41 589	43 801	45 969	47 737	423 440
2	Carbon content in dry skin coko	%	83,05	82,60	83,20	83,50	83,30	83,00	82,96	82,94	82,80	82,90	82,90	83,00	83,01
2	Carbon content in dry skip coke	tones C	0	0	30 059	36 285	31 596	34 057	35 072	36 094	34 436	36 311	38 108	39 622	351 506
3	Consumption of NG (reduced)	th. m ³	0	0	7 079	11 971	9 368	10 624	11 617	11 363	9 734	11 616	12 546	12 509	108 427
4	Carbon content in NG	kg C/m ³	0,50	0,50	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49
4	Carbon content in NG	tones C	0	0	3 502	5 923	4 633	5 255	5 747	5 617	4 811	5 745	6 207	6 190	53 630
5	CO2 emissions from coke production in BPCP (reduced)	tones CO ₂	0	0	35 954	43 244	37 746	40 834	42 072	43 309	41 387	43 589	45 746	47 505	421 386
6	CO2 emissions from coke consumption in BF #2 (reduced)	tones CO ₂	0	0	110 218	133 045	115 851	124 877	128 598	132 345	126 264	133 140	139 730	145 280	1 289 348
7	CO2 emissions from NG consumption in BF #2 (reduced)	tones CO ₂	0	0	12 842	21 719	16 989	19 267	21 072	20 596	17 641	21 065	22 757	22 695	196 643
8	CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #2 (reduced)	tones CO ₂	0	0	159 013	198 008	170 586	184 978	191 742	196 250	185 293	197 794	208 234	215 480	1 907 377

5) Total reduced emissions from consumption of dry skip metallurgical coke in BF #10, production of this metallurgical coke in BPCP, consumption of NG in BF #10

PE coke, NG for BF10 reduced = M skip metallurgical coke BF 10 reduced PJ * %C metallurgical coke PJ /100 * 44/12 + M skip metallurgical coke BF 10 reduced PJ * SPE metallurgical coke + FC NG BF 10 reduced PJ * C NG PJ * 44/12 (PDD formula D.1.1.2.-17)

M skip metallurgical coke BF 10 reduced PJ = M skip metallurgical coke BF 10 PJ * K5 K₅ = 1 если Р _{pig iron BF 10 PJ} <= Р _{max pig iron BF 10 BL} $K_5 = P_{\text{max pig iron BF 10 BL}} / P_{\text{pig iron BF 10 PJ}} \text{ if } P_{\text{pig iron BF 10 PJ}} > P_{\text{max pig iron BF 10 BL}}$

FC NG BF 10 reduced PJ = FC NG BF 10 PJ * K₅

Notation	Data variable	Unit	Notation	Data variable	Unit	Notation	Data variable	Unit
PE coke, NG for BF10 reduced	Project emissions from consumption of dry skip metallurgical coke in BF #10, production of this metallurgical coke in BPCP, consumption of NG in BF #10, reduced	tones CO ₂	FC _{NG BF 10} reduced PJ	Project consumption of NG in BF #10, reduced	th. m3	M skip metallurgical coke_BF 10 reduced PJ	Project consumption of dry skip metallurgical coke in BF #10, reduced	tones
M _{skip} metallurgical coke _BF 10 PJ	Project emissions from consumption of dry skip metallurgical coke in BF #10	tones	К5	Project adjustment coefficient for BF #10	-	P max pig iron BF 10 BL	Maximum production of pig iron in BF #10 under the baseline scenario (1768,0 thousand tons in 1988)	tones
P pig iron BF 10 PJ	Project production of pig iron in BF #10	tones	FC NG_BF 10 PJ	Project consumption of NG in BF #10	th. m3		<u> </u>	

(PDD formula D.1.1.2.-18) (PDD formula D.1.1.2.-19)

(PDD formula D.1.1.2.-20)

#	Name	Unit	Jan.	Feb.	March	Apr.	Мау	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of dry skip metallurgical coke actual	tones	46 161	53 096	54 019	60 357	58 674	56 399	59 354	62 780	61 558	61 427	57 326	61 019	692 170
2	Consumption of NG actual	th. m ³	8 817	11 548	13 315	11 929	11 928	11 118	12 033	12 941	11 510	12 407	14 972	12 079	144 597
3	3 Pig iron production		102 356	120 979	124 002	139 435	135 277	130 428	136 798	145 164	142 668	142 793	127 860	141 197	1 588 957
4	Maximum production of pig iron in BF#10 (historical data of 1987)	tones	1 789 600												
5	5 Adjustment coefficient K5 1,000														

Consumption of coke, NG and pig iron production in 2009 in BF #10, maximum production of pig iron by BF #10 and adjustment coefficient K5

CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #10 (reduced)

#	Name	Unit	Jan.	Feb.	March	Apr.	Мау	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of dry skip metallurgical coke (reduced)	tones	46 161	53 096	54 019	60 357	58 674	56 399	59 354	62 780	61 558	61 427	57 326	61 019	692 170
2	Carbon content in dry skip coke	%	83,39	83,39	84,02	83,39	83,41	83,31	83,43	83,64	83,40	83,84	83,63	83,10	83,50
2	Carbon content in dry skip coke	tones C	38 494	44 277	45 386	50 332	48 940	46 986	49 519	52 509	51 339	51 500	47 942	50 707	577 931
3	Consumption of NG (reduced)	th. m ³	8 817	11 548	13 315	11 929	11 928	11 118	12 033	12 941	11 510	12 407	14 972	12 079	144 597
4	Carbon content in NG	kg C/m ³	0,50	0,50	0,50	0,50	0,50	0,50	0,49	0,49	0,49	0,49	0,49	0,50	0,50
4	Carbon content in NG	tones C	4 366	5 717	6 592	5 905	5 904	5 506	5 956	6 406	5 695	6 140	7 411	5 980	71 579
5	CO2 emissions from coke production in BPCP (reduced)	tones CO ₂	44 613	51 315	52 207	58 332	56 706	54 507	57 363	60 674	59 493	59 366	55 403	58 972	668 950
6	CO2 emissions from coke consumption in BF #10 (reduced)	tones CO ₂	141 144	162 348	166 417	184 550	179 447	172 282	181 570	192 534	188 244	188 835	175 786	185 926	2 119 081
7	CO2 emissions from NG consumption in BF #10 (reduced)	tones CO ₂	16 010	20 963	24 172	21 652	21 649	20 187	21 839	23 488	20 882	22 514	27 174	21 925	262 456
8	CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #10 (reduced)	tones CO ₂	201 767	234 626	242 795	264 534	257 802	246 977	260 772	276 695	268 619	270 715	258 362	266 823	3 050 487

Con	sumption of coke, NG and pig iron producti	ion in 2010 ir	n BF #10, m	aximum pro	oduction of	pig iron by	BF #10 and	l adjustmer	nt coefficien	t K5		
#	Name	Unit	Jan.	Feb.	March	Apr.	Мау	June	July	Aug.	Sep.	Oc

#	Name	Unit	Jan.	Feb.	March	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of dry skip metallurgical coke actual	tones	57 833	57 841	63 270	60 673	56 513	57 612	58 652	60 432	57 817	61 420	62 177	65 601	719 841
2	Consumption of NG actual	th. m ³	11 554	12 816	13 403	12 509	10 941	11 249	11 111	11 406	10 444	11 466	11 500	12 317	140 716
3	Pig iron production tor		130 138	130 426	143 650	139 668	130 913	134 129	137 806	138 006	125 510	137 432	139 578	147 470	1 634 726
4	4 Maximum production of pig iron in BF#10 (historical data of 1987) tones 1 789 600														
5	5 Коэффициент приведения К5 1,000														

CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #10 (reduced)

#	Name	Unit	Jan.	Feb.	March	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of dry skip metallurgical coke (reduced)	tones	57 833	57 841	63 270	60 673	56 513	57 612	58 652	60 432	57 817	61 420	62 177	65 601	719 841
2	Carbon contant in dru skin caka	%	83,05	82,60	83,20	83,50	83,30	83,00	82,96	82,94	82,80	82,90	82,90	83,00	83,01
2	Carbon content in dry skip coke	tones C	48 030	47 777	52 641	50 662	47 075	47 818	48 657	50 120	47 872	50 917	51 545	54 449	597 555
3	Consumption of NG (reduced)	th. m ³	11 554	12 816	13 403	12 509	10 941	11 249	11 111	11 406	10 444	11 466	11 500	12 317	140 716
4	Carbon content in NG	kg C/m ³	0,50	0,50	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49
4	Carbon content in NG	tones C	5 720	6 344	6 631	6 190	5 411	5 564	5 497	5 638	5 162	5 671	5 689	6 095	69 611
5	CO2 emissions from coke production in BPCP (reduced)	tones CO ₂	57 552	57 560	62 963	60 379	56 239	57 333	58 368	60 139	57 537	61 122	61 875	65 283	716 349
6	CO2 emissions from coke consumption in BF #10 (reduced)	tones CO ₂	176 111	175 181	193 016	185 761	172 610	175 333	178 407	183 775	175 532	186 696	188 997	199 646	2 191 064
7	CO2 emissions from NG consumption in BF #10 (reduced)	tones CO ₂	20 973	23 263	24 314	22 695	19 841	20 400	20 154	20 674	18 928	20 793	20 860	22 347	255 242
8	CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #10 (reduced)	tones CO ₂	254 637	256 004	280 293	268 834	248 690	253 065	256 929	264 587	251 997	268 612	271 733	287 275	3 162 656

Project CO₂ emissions from electricity consumption

CO₂ emissions from electricity consumption by sinter cooling and stabilization units (SCaSU) at sintering plants #2 and #3

PE EC CSU AF 2.3 = $\sum EC$ CSU AF 2.3 * EF own generation_PJ	(PDD formula D.1.1.221)
$\sum EC_{CSUAF2.3} = EC_{CSUAF2} + EC_{CSUAF3}$	(PDD formula D.1.1.222)
CO ₂ emissions from electricity consumption for production of pure nitrogen	
PE _{EC_pure N2} = EC _{pure N2} * EF _{own generation_PJ}	(PDD formula D.1.1.223)

EC pure N2 = (V pure N2_BF4 + V pure N2_BF6 + V pure N2_BF9 + V pure N2_BF2 + V pure N2_BF10) * SEC pure N2

 $PE_{EC} = PE_{EC CSU AF 2.3} + PE_{EC_{pure N2}}$

(PDD formula D.1.1.2.-25)

(PDD formula D.1.1.2.-24)

Notation	Data variable	Unit	Notation	Data variable	Unit	Notation	Data variable	Unit
PE _{EC CSU AF 2.3}	CO2 project emissions from electricity consumption by SCaSU	tones CO ₂	\sum PE ec csu af 2.3	Total electricity consumption by SCaSU at SP #2 and SP #3	MWh	EF _{own} generation_PJ	Average CO2 emission factor for electricity generation at MMK	tCO ₂ /MW h
EC CSU AF 2	Electricity consumption by SCaSU at SP #2	MWh	EC _{CSU AF 3}	Electricity consumption by SCaSU at SP #3	MWh	PE EC_pure N2	CO2 emissions from electricity consumption for production of pure nitrogen	tones CO ₂
EC pure N2	Electricity consumption for production of pure nitrogen	MWh	V pure N2_BF4	Consumption of pure nitrogen in BF #4	th. m3	V pure N2_BF6	Consumption of pure nitrogen in BF #6	th. m3
V pure N2_BF9	Consumption of pure nitrogen in BF #9	th. m3	V pure N2_BF2	Consumption of pure nitrogen in BF #2	th. m3	V pure N2_BF10	Consumption of pure nitrogen in BF #10	th. m3
SEC pure N2	Specific electricity consumption for production of pure nitrogen	MWh/ th. m3	PE _{EC}	Total project CO2 emissions from electricity consumption	tones CO ₂			

	Electricity consumption by USCaS at Sintering Plants #2	,3													
#	Name	Unit	Jan.	Feb.	March	Apr.	Мау	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Electricity consumption by USCaS at SP #2,3	MWh	6 033	5 150	5 925	5 615	5 469	5 239	5 177	5 572	5 526	5 740	5 818	6 050	67 315

Electricity consumption by USCaS at Sintering Plants #2,3

Electricity consumption for pure nitrogen production

#	Name	Unit	Jan.	Feb.	March	Apr.	Мау	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of pure nitrogen	th. m ³	5 537	5 007	5 481	5 387	5 469	5 400	5 486	5 524	5 440	5 726	4 791	5 176	64 425
2	Specific electricity consumption for pure nitrogen production	MWh/ths. m³	0,826	0,826	0,826	0,826	0,826	0,826	0,826	0,826	0,826	0,826	0,826	0,826	0,826
3	Electricity consumption for pure nitrogen production	MWh	4 574	4 136	4 527	4 450	4 517	4 461	4 532	4 563	4 493	4 729	3 958	4 276	53 215

Emission factor for electricity produced at MMK

#	Name	Unit	Value
1	Average CO2 EF for electricity produced at MMK*	ton CO2/MWh	0,895

* The value from Monitoring report 2009 for project "Implementation of arc-furnace steelmaking at Magnitogorsk Iron and Steel Works"

CO2 emissions from electricity consumption in the project

:	#	Name	Unit	Jan.	Feb.	March	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
	1	Emissions from electricity consumption by USCaS in SP #2,3	tones CO2	5 401	4 610	5 303	5 027	4 895	4 690	4 634	4 988	4 947	5 138	5 208	5 416	60 257
	2	Emissions from electricity consumption for pure nitrogen production	tones CO2	4 094	3 702	4 052	3 983	4 044	3 993	4 057	4 084	4 022	4 234	3 543	3 827	47 635
	3	Total emissions from electricity consumption	tones CO2	9 495	8 312	9 356	9 010	8 939	8 683	8 691	9 073	8 969	9 371	8 751	9 243	107 892

	Electricity consumption by USCaS at Sintering Plants #2	,3													
#	Name	Unit	Jan.	Feb.	March	Apr.	Мау	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Electricity consumption by USCaS at SP #2,3	MWh	6 082	5 551	5 900	5 529	5 397	5 186	5 385	5 514	5 384	5 639	5 645	5 791	67 003

ation by LICCoC at Cintoring Dianta #2.2

Electricity consumption for pure nitrogen production

#	Name	Unit	Jan.	Feb.	March	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Consumption of pure nitrogen	th. m ³	3 905	3 591	4 266	4 874	5 135	3 935	4 032	4 012	4 262	4 501	4 119	3 699	50 331
2	Specific electricity consumption for pure nitrogen production	MWh/ths. m³	0,826	0,826	0,826	0,826	0,826	0,826	0,826	0,826	0,826	0,826	0,826	0,826	0,826
3	Electricity consumption for pure nitrogen production	MWh	3 226	2 966	3 524	4 026	4 242	3 250	3 330	3 314	3 520	3 718	3 402	3 055	41 573

Emission factor for electricity produced at MMK

#	Name	Unit	Value
1	Average CO2 EF for electricity produced at MMK*	ton CO2/MWh	0,920

* The value from Monitoring report 2010 for project "Implementation of arc-furnace steelmaking at Magnitogorsk Iron and Steel Works"

CO2 emissions from electricity consumption in the project

#	Name	Unit	Jan.	Feb.	March	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total per year
1	Emissions from electricity consumption by USCaS in SP #2,3	tones CO2	5 595	5 107	5 428	5 086	4 965	4 771	4 954	5 073	4 953	5 188	5 194	5 328	61 643
2	Emissions from electricity consumption for pure nitrogen production	tones CO2	2 968	2 729	3 242	3 704	3 902	2 990	3 064	3 049	3 239	3 420	3 130	2 811	38 248
3	Total emissions from electricity consumption	tones CO2	8 563	7 835	8 670	8 790	8 867	7 762	8 018	8 122	8 192	8 609	8 324	8 138	99 891

PE = PE coke, NG for BF4 reduced + PE coke, NG for BF6 reduced + PE coke, NG for BF9 reduced + PE coke, NG for BF2 reduced + PE coke, NG for BF10 reduced + PE EC (PDD formula D.1.1.2.-26)

#	Parameter	Project emissions, tones CO2/year
1	Metallurgical coke production in BPCP	2 307 596
2	Dry skip metallurgical coke consumption	7 310 092
3	NG consumption	1 049 274
4	Electricity consumption	107 892
5	Total	10 774 854

12 months of 2009

12 months of 2010

#	Parameter	Project emissions, tones CO2/year
1	Metallurgical coke production in BPCP	2 731 742
2	Dry skip metallurgical coke consumption	8 355 938
3	NG consumption	1 145 662
4	Electricity consumption	99 891
5	Total	12 333 232

D.2 BASELINE EMISSIONS

Total CO₂ emissions from consumption of dry skip metallurgical coke in BF #4, production of this metallurgical coke in BPCP, consumption of NG in BF #4, in the baseline

BE coke, NG for BF4 = SM skip metallurgical_coke_BF4 averaged BL * P pig iron BF4 BL * %C metallurgical coke_PJ / 100 * 44/12 + SM skip metallurgical_coke_BF4 averaged BL * P pig iron BF4 BL * SPE metallurgical coke + SFC NG_BF4 averaged BL * P pig iron BF4 BL * C NG_PJ * 44/12 (PDD formula D.1.1.4.-1)

 $P_{pig iron BF 4 BL} = P_{pig iron BF 4 PJ} if P_{pig iron BF 4 PJ} <= P_{max pig iron BF 4 BL}$ $P_{pig iron BF 4 BL} = P_{max pig iron BF 4 BL} if P_{pig iron BF 4 PJ} > P_{max pig iron BF 4 BL}$

SM skip metallurgical_coke_BF 4 averaged $BL = M_{skip_coke_BF 4}$ averaged BL / P_{pig} iron BF 4 averaged BL

SFC NG_BF 4 averaged BL = FC NG_BF 4 averaged BL / P pig iron BF 4 averaged BL

Notation	Data variable	Unit	Notation	Data variable	Unit	Notation	Data variable	Unit
BE coke, NG for BF4	Baseline emissions from consumption of dry skip metallurgical coke in BF #4, production of this metallurgical coke in BPCP, consumption of NG in BF #4	tones CO ₂	SM _{skip} metallurgical coke BF 4 averaged BL	Baseline specific consumption of dry skip metallurgical coke in BF #4, averaged for 2004- 2006	kg/t pig iron	P pig iron BF 4 BL	Baseline production of pig iron in BF #4	t
SFC _{NG BF 4} averaged BL	Specific baseline consumption of NG in BF #4, averaged for 2004-2006	m3/ t pig iron	M skip coke BF 4 averaged BL	Baseline consumption of dry skip metallurgical coke in BF #4, averaged for 2004-2006	t	P pig iron BF 4 averaged BL	Baseline production of pig iron in BF #4, averaged for 2004-2006	t
%C metallurgical coke_PJ	Carbon content in metallurgical coke	% by weight	FC _{NG BF4} averaged BL	Baseline consumption of NG in BF #4, averaged for 2004-2006	m3	P max pig iron BF 4 BL	Maximum baseline production of pig iron in BF #4 (1217.4 thousand tons in 1988)	t
C _{NG_PJ}	Carbon content in NG	kg C/ m3	SPE metallurgical_coke	Specific CO2 emissions per ton of dry metallurgical coke produced in BPCP	t CO2/t			

(PDD formula D.1.1.4.-3)

(PDD formula D.1.1.4.-2)

(PDD formula D.1.1.4.-4)

#	Name	Unit	Value
1	Baseline consumption of dry skip metallurgical coke	tones	579 482
2	Carbon content in coke	%	83,50
2		tons C	483 844
3	Baseline consumption of NG	th. m3	124 053
4	Carbon content in NG	kg C/m3	0,50
4	Carbon content in NG	tons C	61 410
5	Pig iron production (baseline)	tones	1 217 400
6	CO2 emissions from coke production in BPCP	t CO2	560 043
7	CO2 emissions from coke consumption in BF #4	t CO2	1 774 093
8	CO2 emissions from NG consumption in BF #4	t CO2	225 170
9	Baseline CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #4	t CO2	2 559 306

BF#4 baseline parameters

#	Name	Unit	Value
1	Specific consumption of dry skip coke in BF #4	kg/ ton of pig iron	476,0
2	Specific consumption of NG in BF #4	m3/ton of pig iron	101,9

12 months of 2010

#	Name	Unit	Value
1	Baseline consumption of dry skip metallurgical coke	tones	551 189
2	Carbon content in coke	%	83,01
2		tons C	457 553
3	Baseline consumption of NG	th. m3	117 996
		kg C/m3	0,49
4	Carbon content in NG	tons C	58 371
5	Pig iron production (baseline)	tones	1 157 960
6	CO2 emissions from coke production in BPCP	t CO2	548 515
7	CO2 emissions from coke consumption in BF #4	t CO2	1 677 696
8	CO2 emissions from NG consumption in BF #4	t CO2	214 027
9	Baseline CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #4	t CO2	2 440 238

BE coke, NG for BF6 = SM skip metallurgical coke BF 6 averaged BL * P pig iron BF 6 BL * %C metallurgical coke PJ / 100 * 44/12 + SM skip metallurgical coke BF 6 averaged BL * P pig iron BF 6 BL * SPE metallurgical coke + SFC NG BF 6 averaged BL * P pig iron BF 6 BL * C NG PJ * 44/12 (PDD formula D.1.1.4.-5)

P_{pig iron BF 6 BL} = P_{pig iron BF 6 PJ} if P_{pig iron BF 6 PJ} <= P_{max pig iron BF 6 BL} $P_{pig iron BF 6 BL} = P_{max pig iron BF 6 BL}$ if $P_{pig iron BF 6 PJ} > P_{max pig iron BF 6 BL}$

SM skip metallurgical coke BF 6 averaged BL = M skip coke BF 6 averaged BL / P pig iron BF 6 averaged BL

Notation	Data variable	Unit	Notation	Data variable	Unit	Notation	Data variable	Unit
BE coke, NG for BF6	Baseline emissions from consumption of dry skip metallurgical coke in BF #6, production of this metallurgical coke in BPCP, consumption of NG in BF #6	tones CO ₂	SM _{skip} metallurgical coke BF 6 averaged BL	Baseline specific consumption of dry skip metallurgical coke in BF #6, averaged for 2004- 2006	kg/t pig iron	P pig iron BF 6 BL	Baseline production of pig iron in BF #6	t
SFC NG BF 6 averaged BL	Specific baseline consumption of NG in BF #6, averaged for 2004- 2006	m3/ t pig iron	M skip coke BF 6 averaged BL	Baseline consumption of dry skip metallurgical coke in BF #6, averaged for 2004-2006	t	P pig iron BF 6 averaged BL	Baseline production of pig iron in BF #6, averaged for 2004- 2006	t
SPE metallurgical_coke	Specific CO2 emissions per ton of dry metallurgical coke produced in BPCP	t CO2/t	FC NG BF 6 averaged BL	Baseline consumption of NG in BF #6, averaged for 2004-2006	m3	P max pig iron BF 6 BL	Maximum baseline production of pig iron in BF #6, (1110,7 thousand tons in 1990)	t

SFC NG BF 6 averaged BL = FC NG BF 6 averaged BL / P pig iron BF 6 averaged BL

(PDD formula D.1.1.4.-6)

(PDD formula D.1.1.4.-7)

(PDD formula D.1.1.4.-8)

#	Name	Unit	Value
1	Baseline consumption of dry skip metallurgical coke	tones	500 512
2	Carbon content in coke	%	83,50
2		tons C	417 907
3	Baseline consumption of NG	th. m3	113 152
4	Carbon content in NG	kg C/m3	0,50
4		tons C	56 014
5	Pig iron production (baseline)	tones	1 057 495
6	CO2 emissions from coke production in BPCP	t CO2	483 722
7	CO2 emissions from coke consumption in BF #6	t CO2	1 532 326
8	CO2 emissions from NG consumption in BF #6	t CO2	205 383
9	Baseline CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #6	t CO2	2 221 431

BF #6	BF #6 baseline parameters						
#	Name	Unit	Value				
1	Specific consumption of dry skip coke in BF #6	kg/ ton of pig iron	473,3				
2	Specific consumption of NG in BF #6	m3/ton of pig iron	107,0				

12 months of 2010

#	Name	Unit	Value
1	Baseline consumption of dry skip metallurgical coke	tones	393 774
2	Carbon content in coke	%	83,01
2		tons C	326 880
3	Baseline consumption of NG	th. m3	89 021
4	Carbon content in NG	kg C/m3	0,49
4		tons C	44 037
5	Pig iron production (baseline)	tones	831 975
6	CO2 emissions from coke production in BPCP	t CO2	391 864
7	CO2 emissions from coke consumption in BF #6	t CO2	1 198 559
8	CO2 emissions from NG consumption in BF #6	t CO2	161 471
9	Baseline CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #6	t CO2	1 751 894

Total CO₂ emissions from consumption of dry skip metallurgical coke in BF #9, production of this metallurgical coke in BPCP, consumption of NG in BF #9, in the baseline

BE coke, NG for BF 9 = SM skip metallurgical coke_BF 9 averaged BL * P pig iron BF 9 BL *%C metallurgical coke_PJ / 100 * 44/12 + SM skip metallurgical_coke_BF 9 averaged BL * P pig iron BF 9 BL * SPE metallurgical coke + SFC NG BF 9 averaged BL * P pig iron BF 9 BL * C NG PJ * 44/12 (PDD formula D.1.1.4.-9)

 $\begin{array}{l} P_{pig iron BF9BL} = P_{pig iron BF9PJ} \text{ if } P_{pig iron BF9PJ} <= P_{max pig iron BF9BL} \\ P_{pig iron BF9BL} = P_{max pig iron BF9BL} \text{ if } P_{pig iron BF9PJ} > P_{max pig iron BF9BL} \end{array}$

SM skip metallurgical_coke_BF9 averaged $BL = M_{skip_coke_BF9}$ averaged BL / P_{pig} iron BF9 averaged BL

SFC NG_BF9 averaged BL = FC NG_BF9 averaged BL / P pig iron BF9 averaged BL

Notation	Data variable	Unit	Notation	Data variable	Unit	Notation	Data variable	Unit
BE coke, NG for BF9	Baseline emissions from consumption of dry skip metallurgical coke in BF #9, production of this metallurgical coke in BPCP, consumption of NG in BF #9	tones CO ₂	SM _{skip} metallurgical coke BF9 averaged BL	Baseline specific consumption of dry skip metallurgical coke in BF #9, averaged for 2004- 2006	kg/t pig iron	P pig iron BF 9 BL	Baseline production of pig iron in BF #9	t
SFC NG BF 9 averaged BL	Specific baseline consumption of NG in BF #9, averaged for 2004-2006	m3/ t pig iron	M skip coke BF 9 averaged BL	Baseline consumption of dry skip metallurgical coke in BF #9, averaged for 2004-2006	t	P pig iron BF 9 averaged BL	Baseline production of pig iron in BF #9, averaged for 2004- 2006	t
SPE metallurgical_coke	Specific CO2 emissions per ton of dry metallurgical coke produced in BPCP	t CO2/t	FC NG BF9 averaged BL	Baseline consumption of NG in BF #9, averaged for 2004-2006	m3	P max pig iron BF 9 BL	Maximum baseline production of pig iron in BF #9 (1768,0 thousand tons in 1988)	t

(PDD formula D.1.1.4.-11)

(PDD formula D.1.1.4.-10)

(PDD formula D.1.1.4.-12)

#	Name	Unit	Value
1	Baseline consumption of dry skip metallurgical coke	tones	722 336
2	Carbon content in coke	%	83,50
2		tons C	603 121
3	Baseline consumption of NG	th. m3	153 911
4	Carbon content in NG	kg C/m3	0,50
4		tons C	76 191
5	Pig iron production (baseline)	tones	1 611 639
6	CO2 emissions from coke production in BPCP	t CO2	698 105
7	CO2 emissions from coke consumption in BF #9	t CO2	2 211 443
8	CO2 emissions from NG consumption in BF #9	t CO2	279 366
9	Baseline CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #9	t CO2	3 188 914

BF #9 baseline parameters

#	Name	Unit	Value
1	Specific consumption of dry skip coke in BF #9	kg/ ton of pig iron	448,2
2	Specific consumption of NG in BF #9	m3/ton of pig iron	95,5

12 months 2010

#	Name	Unit	Value
1	Baseline consumption of dry skip metallurgical coke	tones	718 561
2	Carbon content in coke	%	83,01
2		tons C	596 492
3	Baseline consumption of NG	th. m3	153 107
4	Carbon content in NG	kg C/m3	0,49
4		tons C	75 740
5	Pig iron production (baseline)	tones	1 603 214
6	CO2 emissions from coke production in BPCP	t CO2	715 075
7	CO2 emissions from coke consumption in BF #9	t CO2	2 187 137
8	CO2 emissions from NG consumption in BF #9	t CO2	277 712
9	Baseline CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #9	t CO2	3 179 925

45

Total CO₂ emissions from consumption of dry skip metallurgical coke in BF #2, production of this metallurgical coke in BPCP, consumption of NG in BF **#2**, in the baseline

BE coke, NG for BF 2 = SM skip metallurgical coke_BF 2 averaged BL * P pig iron BF 2 BL *%C metallurgical coke_PJ / 100 * 44/12 + SM skip metallurgical_coke_BF 2 averaged BL * P pig iron BF 2 BL * SPE metallurgical coke + SFC NG_BF 2 averaged BL * P pig iron BF 2 BL * C NG_PJ * 44/12 (PDD formula D.1.1.4.-13)

P pig iron BF 2 BL = P pig iron BF 2 PJ if P pig iron BF 2 PJ <= P max pig iron BF 2 BL	(PDD formula D.1.1.414
P pig iron BF 2 BL = P max pig iron BF 2 BL f P pig iron BF 2 PJ > P max pig iron BF 2 BL	
${ m SM}$ skip metallurgical_coke_BF 2 averaged BL = ${ m M}$ skip_coke_BF 2 averaged BL / ${ m P}$ pig iron BF 2 averaged BL	(PDD formula D.1.1.415

SFC NG BF 2 averaged BL = FC NG BF 2 averaged BL / P pig iron BF 2 averaged BL

Notation	Data variable	Unit	Notation	Data variable	Unit	Notation	Data variable	Unit
BE coke, NG for BF2	Baseline emissions from consumption of dry skip metallurgical coke in BF #2, production of this metallurgical coke in BPCP, consumption of NG in BF #2	tones CO ₂	SM _{skip} metallurgical coke BF 2 averaged BL	Baseline specific consumption of dry skip metallurgical coke in BF #2, averaged for 2004-2006	kg/t pig iron	P pig iron BF 2 BL	Baseline production of pig iron in BF #2	t
SFC _{NG BF 2} averaged BL	Specific baseline consumption of NG in BF #2, averaged for 2004-2006	m3/ t pig iron	M skip coke BF 2 averaged BL	Baseline consumption of dry skip metallurgical coke in BF #2, averaged for 2004-2006	t	P pig iron BF 2 averaged BL	Baseline production of pig iron in BF #2, averaged for 2004- 2006	t
SPE metallurgical_coke	Specific CO2 emissions per ton of dry metallurgical coke produced in BPCP	t CO2/t	FC NG BF 2 averaged BL	Baseline consumption of NG in BF #2, averaged for 2004- 2006	m3	P max pig iron BF 2 BL	Maximum baseline production of pig iron in BF #2 (1182,901 – averaged for 2004- 2006)	t

-14)

-15)

(PDD formula D.1.1.4.-16)

#	Name	Unit	Value
1	Baseline consumption of dry skip metallurgical coke	tones	446 531
2	Carbon content in coke	%	83,01
2		tons C	370 674
3	Baseline consumption of NG	th. m3	99 580
4	Carbon content in NG	kg C/m3	0,49
4		tons C	49 261
5	Pig iron production (baseline)	tones	956 578
6	CO2 emissions from coke production in BPCP	t CO2	444 365
7	CO2 emissions from coke consumption in BF #2	t CO2	1 359 139
8	CO2 emissions from NG consumption in BF #2	t CO2	180 622
9	Baseline CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #2	t CO2	1 984 126

BF #2 baseline parameters

#	Name	Unit	Value
1	Specific consumption of dry skip coke in BF #2	kg/ ton of pig iron	466,8
2	Specific consumption of NG in BF #2	m3/ton of pig iron	104,1

Total CO₂ emissions from consumption of dry skip metallurgical coke in BF #10, production of this metallurgical coke in BPCP, consumption of NG in BF #10, in the baseline

 $BE_{coke, NG for BF 10} = SM_{skip metallurgical coke_BF 10 averaged BL} * P_{pig iron BF 10 BL} * \%C_{metallurgical coke_PJ} / 100 * 44/12 + SM_{skip metallurgical_coke_BF 10 averaged BL} * P_{pig iron BF 10 BL} * C_{NG_PJ} * 44/12$ (PDD formula D.1.1.4.-17)

 $\begin{array}{l} P_{pig \ iron \ BF \ 10 \ BL} = P_{pig \ iron \ BF \ 10 \ PJ} \ if \ P_{pig \ iron \ BF \ 10 \ PJ} <= P_{max \ pig \ iron \ BF \ 10 \ BL} \\ P_{pig \ iron \ BF \ 10 \ BL} = P_{max \ pig \ iron \ BF \ 10 \ BL} \ if \ P_{pig \ iron \ BF \ 10 \ PJ} > P_{max \ pig \ iron \ BF \ 10 \ BL} \end{array}$

SM skip metallurgical_coke_BF 10 averaged BL = M skip metallurgical_coke_BF 10 averaged BL / P pig iron BF 10 averaged BL

SFC NG_BF 10 averaged BL = FC NG_BF 10 averaged BL / P pig iron BF 10 averaged BL

Notation	Data variable	Unit	Notation	Data variable	Unit	Notation	Data variable	Unit
BE coke. NG for BF10	Baseline emissions from consumption of dry skip metallurgical coke in BF #10, production of this metallurgical coke in BPCP, consumption of NG in BF #10	tones CO ₂	SM _{skip} metallurgical coke BF 10 averaged BL	Baseline specific consumption of dry skip metallurgical coke in BF #10, averaged for 2004-2006	kg/t pig iron	P pig iron BF 10 BL	Baseline production of pig iron in BF #10	t
SFC _{NG BF 10} averaged BL	Specific baseline consumption of NG in BF #10, averaged for 2004-2006	m3/ t pig iron	M skip coke BF 10 averaged BL	Baseline consumption of dry skip metallurgical coke in BF #10, averaged for 2004-2006	t	P pig iron BF 10 averaged BL	Baseline production of pig iron in BF #10, averaged for 2004-2006	t
SPE metallurgical_coke	Specific CO2 emissions per ton of dry metallurgical coke produced in BPCP	t CO2/t	FC NG BF 10 averaged BL	Baseline consumption of NG in BF #10, averaged for 2004- 2006	m3	P max pig iron BF 10 BL	Maximum baseline production of pig iron in BF #10, (1789.6 thousand tons in 1987)	

(PDD formula D.1.1.4.-19)

(PDD formula D.1.1.4.-20)

(PDD formula D.1.1.4.-18)

12 months 2009

#	Name	Unit	Value
1	Baseline consumption of dry skip metallurgical coke	tones	688 813
2	Carbon content in coke	%	83,50
2		tons C	575 130
3	Baseline consumption of NG	th. m3	136 809
4	Carbon content in NG	kg C/m3	0,50
4		tons C	67 725
5	Pig iron production (baseline)	tones	1 588 957
6	CO2 emissions from coke production in BPCP	t CO2	665 706
7	CO2 emissions from coke consumption in BF #10	t CO2	2 108 810
8	CO2 emissions from NG consumption in BF #10	t CO2	248 323
9	Baseline CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #10	t CO2	3 022 839

BF #10 basleline parameters

#	Name	Unit	Value
1	Specific consumption of dry skip coke in BF #10	kg/ ton of pig iron	433,5
2	Specific consumption of NG in BF #10	m3/ton of pig iron	86,1

12 months 2010

#	Name	Unit	Value
1	Baseline consumption of dry skip metallurgical coke	tones	708 654
2	Carbon content in coke	%	83,01
2		tons C	588 268
3	Baseline consumption of NG	th. m3	140 750
4	Carbon content in NG	kg C/m3	0,49
4	Carbon content in NG	tons C	69 627
5	Pig iron production (baseline)	tones	1 634 726
6	CO2 emissions from coke production in BPCP	t CO2	705 216
7	CO2 emissions from coke consumption in BF #10	t CO2	2 156 983
8	CO2 emissions from NG consumption in BF #10	t CO2	255 298
9	Baseline CO2 emissions from the coke production in BPCP, consumption of coke and NG in BF #10	t CO2	3 117 498

Total baseline CO₂ emissions

BE = **BE** coke, NG for BF4 + **BE** coke, NG for BF6 + **BE** coke, NG for BF9 + **BE** coke, NG for BF2 + **BE** coke, NG for BF10

(PDD formula D.1.1.4.-21)

12 months 2009

#	Parameter	Baseline emissions, tones CO2/year
1	Metallurgical coke production in BPCP	2 407 577
2	Dry skip metallurgical coke consumption	7 626 672
3	NG consumption	958 242
4	Total	10 992 490

12 months 2010

#	Parameter	Baseline emissions, tones CO2/year
1	Metallurgical coke production in BPCP	2 805 035
2	Dry skip metallurgical coke consumption	8 579 515
3	NG consumption	1 089 130
4	Total	12 473 680

D.3 CALCULATION OF EMISSION REDUCTION UNITS

The following formula shall be used to calculate emission reduction:

 $\mathbf{ER} = \mathbf{BE} - \mathbf{PE}$

(PDD formula D.1.4.-1)

#	Parameter	Baseline emissions, tones CO2/year	Project emissions, tones CO2/year	ERUs, tones CO2/year
1	Metallurgical coke production in BPCP	2 407 577	2 307 596	99 981
2	Dry skip metallurgical coke consumption	7 626 672	7 310 092	316 580
3	NG consumption	958 242	1 049 274	-91 033
4	Electricity consumption	-	107 892	-107 892
5	Total	10 992 490	10 774 854	217 636

12 months 2009

12 months 2010

#	Parameter	Baseline emissions, tones CO2/year	Project emissions, tones CO2/year	ERUs, tones CO2/year
1	Metallurgical coke production in BPCP	2 805 035	2 731 742	73 293
2	Dry skip metallurgical coke consumption	8 579 515	8 355 938	223 577
3	NG consumption	1 089 130	1 145 662	-56 532
4	Electricity consumption	-	99 891	-99 891
5	Total	12 473 680	12 333 232	140 448

Appendix 1

Colour legend for calculation tables

	Carbon contaning flow
	Data input from MMK reports
	Carbon mass
0,19	Carbon content
	Specific CO2 emissions
	CO2 emissions, associated with production of profiled steel
	billet
	value fixed ex-ante
	value which requires a special note in the monitoring report
	Baseline data fixed-ex-ante

List of abbreviations

AIE BC BF BFG BFP BLT BPCP CEST CHPP CL CMP COG CPP DBC EF EIA ERU GDS GHG IPCC IT JI	Accredited Independent Entity Bell charger Blast furnace Blast furnace gas Blast furnace plant Bell-less top By-product coke plant Center for Energy Saving Technologies Combined heat power plant Central Lab Conference of the Parties serving as the Meeting of the Parties Coke oven gas Central power plant Double bell charger Emission factor Environmental impact assessment Emission reduction unit Gas-distributing station Greenhouse gas Intergovernmental Panel on Climate Change Information technology Joint Implementation
LoA MED	Letter of Approval Ministry of Economic Development
MMK	Magnitogorsk iron and steel works
MNR	Ministry of Natural Resources
MPDS	Maximum Permissible Discharge of Sewage document
MPE	Maximum Permissible Emissions
NG	Natural gas
OJSC PDD	Open joint stock company Project design documentation
PNPPW	Permissible Norm of Producing and Placement of Wastes document
QMS	Quality management system
SABPP	Steam-air blowing power plant
SCaSU	Sinter cooling and stabilization unit
SP	Sintering plant
TEE	Turbine expansion engine

Appendix 3

CALCULATION OF SPECIFIC CO2 EMISSIONS PER TON OF DRY METALLURGICAL COKE PRODUCED IN BPCP

Calculation of specific CO₂ emissions per ton of dry metallurgical coke produced in BPCP by carbon balance method is in line with Tier 3 approach described in Section 4.2.2 of Chapter 4 of "2006 IPCC Guidelines for National Greenhouse Gas Inventories" (IPCC Guidelines 2006).

Production of metallurgical coke

 $\begin{array}{l} PE_{metallurgical_coke} = \left[(M_{coking coal_PJ} * \%C_{coking coal_PJ}) + (FC_{BFG_CP_PJ} * C_{BFG_PJ}) + (FC_{COG_CP_PJ} * C_{COG_PJ}) + (FC_{NG_CP_PJ} * C_{NG_PJ}) - (P_{metallurgical coke_PJ} * \%C_{metallurgical coke_PJ}) - (P_{COG_CP_PJ} * C_{COG_PJ}) - (P_{benzol_PJ} * \%C_{benzol}) - (P_{coal-tar_PJ} * \%C_{coal-tar}) \right] * 44/12 \\ \end{array}$

Where:

M _{coking coal_PJ} – Consumption of dry coal charge in BPCP, th. tons %C _{coking coal_PJ} – Carbon content in dry coal charge, % by mass FC _{BFG_CP_PJ} – Consumption of BFG in BPCP, million m³ C _{BFG_PJ} – Carbon content in BFG, kg C/m³ FC _{COG_CP_PJ} – Consumption of COG in BPCP, million m³ C _{COG_PJ} – Carbon content in COG, kg C/m³ FC _{NG_CP_PJ} – Consumption of NG in BPCP, million m³ C _{NG_PJ} – Carbon content in NG, kg C/m³ P _{metallurgical coke_PJ} – Production of dry metallurgical coke, th. tons %C _{metallurgical coke_PJ} – Carbon content in dry metallurgical coke, % by mass P _{COG_CP_PJ} – Output of COG in BPCP, million m³

PE metallurgical coke - Project emissions from production of metallurgical coke in BPCP, th. tons of CO2

P benzol PJ - Production of crude benzol, th. tons

 $%C_{\text{benzol}}$ – Carbon content in dry benzol, % by mass

P coal-tar PJ – Output of dry coal tar, th. tons

%C coal-tar – Carbon content in dry coal tar, % by mass

Specific CO₂ emissions per ton of produced metallurgical coke

SPE metallurgical coke = PE metallurgical coke / P metallurgical coke_PJ

(3.-2)

Where:

SPE metallurgical_coke – Specific CO₂ emissions per ton of dry metallurgical coke produced in BPCP, tCO₂/t PE metallurgical_coke – Project emissions from production of metallurgical coke in BPCP, th. tCO₂ P metallurgical_coke PJ – Production of dry metallurgical coke, th. tons

Most parameters are monitored, while some of then are fixed ex-ante:

Table 4.1. Fixed parameters

Γ	N⁰	Data variable and unit	Notation	Value
Γ	1.	Carbon content in crude benzol, % by weight	%C benzol	90.0
	2.	Carbon content in coal tar (dry), % by weight	%C coal-tar	86.0

Table 4	.2.	Monitored	parameters
---------	-----	-----------	------------

N⁰			Data source	
	Data variable and unit	Notation	(MMK department)	1

1.	Consumption of dry coal charge in BPCP, th. tons	$M_{\ coking \ coal_CP_PJ}$	BPCP technical report (BPCP)
2.	Carbon content of dry coal charge, % by weight	%C coking coal_CP_PJ	Protocols of chemical analyzes in BPCP (CL)
3.	Consumption of BFG in BPCP, million m^3	FC _{BFG_CP_PJ}	Report "Gas balance by MMK departments" (CEST)
4.	Carbon content in BFG, kgC/m ³	C _{BFG_PJ}	Calculated on the basis of chemical composition of BFG (CEST)
5.	Consumption of COG in BPCP, million m^3	FC _{COG_CP_PJ}	Report "Gas balance by MMK departments" (CEST)
6.	Carbon content in COG, kgC/m ³	C _{COG_PJ}	Calculated on the basis of chemical composition of BFG (CEST)
7.	Consumption of NG in BPCP, million m^3	FC _{NG_CP_PJ}	Report "Gas balance by MMK departments" (CEST)
8.	Carbon content in NG, kgC/m ³	C _{NG_PJ}	Calculated on the basis of chemical composition of NG (Department of Chief Energy Expert)
9.	Production of dry metallurgical coke, thousand t	P metallurgical coke_PJ	BPCP technical report (BPCP)
10.	Carbon content in metallurgical coke, % by weight	%C metallurgical coke_PJ	Protocols of chemical analyzes in BPCP (CL)
11.	Output of COG in BPCP, million m ³	P _{COG_CP_PJ}	Report "Gas balance by MMK departments" (CEST)
12.	Production of crude benzol, th. t	P benzol_PJ	BPCP technical report (BPCP)
13.	Production of anhydrous coal tar (dry), th. t	P coal-tar_PJ	BPCP technical report (BPCP)

Appendix 4

CALCULATION OF CO₂ EMISSION FACTOR FOR ELECTRICITY PRODUCED AT MMK

Calculation of CO_2 emission factor for electricity produced at MMK is based on fuel consumption (blastfurnace gas, coke oven gas, natural gas and energy coal) at own generation stations of MMK (CHPP, CPP, SABPP, turbine section of the steam plant, and gas recovery section of the steam plant).

CO2 emission factor for electricity produced at MMK

 $EF_{own generation_{PJ}} = PE_{total electricity generation} / (EC_{gross_{PJ}} - EC_{import_{PJ}})$ (4.-1)

Where:

EF _{own generation_PJ} – CO₂ emission factor for electricity produced at MMK, t CO₂/MWh PE _{total electricity generation} – Total CO₂ emissions from electricity generation at MMK, th. tons of CO₂ EC _{gross_PJ} – Total electricity generation at MMK, GWh EC _{import_PJ} – Electricity purchases from Unified Energy Systems of Urals grid, GWh

CO₂ emissions from electricity generation at MMK

 $PE_{total electricity generation} = PE_{combustion gases_{electricity}} + PE_{combustion coal_{electricity}}$ (4.-2)

Where:

 $\begin{array}{l} PE_{total \ electricity \ generation} - CO_2 \ emissions \ from \ electricity \ generation \ at \ MMK, \ th. \ tons \ of \ CO_2/year \\ PE_{combustion \ gases_electricity} \ - \ CO_2 \ emissions \ from \ combustion \ of \ gases \ for \ electricity \ generation \ at \ MMK, \ th. \ tCO_2/year \\ tCO_2/year \end{array}$

PE $_{combustion \ coal_electricity}$ - CO₂ emissions from combustion of power station coal for electricity generation at MMK, th. tCO₂/year

CO₂ emissions from combustion of gases for electricity generation at MMK

 $PE_{combustion gases_electricity} = (FC_{BFG_CPP_PJ} * C_{BFG_PJ} + FC_{NG_CPP_PJ} * C_{NG_PJ} + FC_{NG_CHPP_PJ} * C_{NG_PJ} + FC_{NG_SABPP_PJ} * C_{NG_SABPP_PJ} * C_{NG_SABPP_SJ} * C_{NG_SJ} * C_$

Where:

 $PE_{combustion\ gases_electricity}$ - CO_2 emissions from combustion of gases for electricity generation at MMK, thousand tons of CO_2

FC _{BFG_CPP_PJ} – Consumption of BFG in CPP, million m³

FC BFG SABPP PJ – Consumption of BFG in SABPP, million m³

 $C_{BFG,PJ}$ – Carbon content in BFG, kg C/m³

FC COG SABPP PJ- Consumption of COG in SABPP, million m³

C_{COG.PJ} – Carbon content in COG, kg C/m³

FC_{NG_CPP_PJ} – Consumption of NG in CPP, million m³

FC _{NG CHPP PJ} – Consumption of NG in CHPP, million m³

FC _{NG SABPP PJ} – Consumption of NG in SABPP, million m³

FC NG_turbine section of SP_PJ- Consumption of NG in turbine section of Steam Plant, million m³

FC NG_gas recovery unit-2 of SP_PJ – Consumption of NG in gas recovery unit of Steam Plant, million m^3 C NG PJ - Carbon content in NG, kg C/m³

CO2 emissions from combustion of power station coal for electricity generation at MMK

PE combustion coal_electricity = (FC energy coal_CHPP_PJ * %C energy coal)/100 * 44/12 (4.-4)

Where:

 $PE_{\ combustion\ coal_electricity}\text{-}CO_{2}\ emissions\ from\ combustion\ of\ power\ station\ coal,\ thousand\ tons\ of\ CO_{2}$

 $FC_{energy coal_CHPP_PJ}$ – Consumption of power station coal by CHPP, thousand tons

%C energy coal – Carbon content in power station coal, % by mass

While most parameters are monitored, some of them are fixed ex-ante:

Table 4.1. Fixed parameter	Table 4.1.	Fixed	parameters
----------------------------	------------	-------	------------

Į	N⁰	Data variable and unit	Notation	Value
Ī	1.	Carbon content in energy coal, % by weight (IPCC Guidelines 2006)	%C energy coal	73

№	Data variable and unit	Notation	Data source (MMK department)
1.	Consumption of BFG in CPP, million m ³	FC BFG_CPP_PJ	Report on fuel consumption by MMK power generation capacities (Technological Department)
2.	Consumption of NG in CPP, million m ³	FC _{NG_CPP_PJ}	The same as above
3.	Consumption of NG in CHPP, million m ³	FC _{NG_CHPP_PJ}	The same as above
4.	Consumption of BFG in SABPP, million m ³	FC _{bfg_sabpp_pj}	The same as above
5.	Consumption of COG in SABPP, million m ³	FC _{COG_SABPP_PJ}	The same as above
6.	Consumption of NG in SABPP, million m ³	FC _{NG_SABPP_PJ}	The same as above
7.	Consumption of NG in the turbine section of the Steam Plant, million m ³	FC NG_turbine section of SP_PJ	The same as above
8.	Consumption of NG in the gas recovery unit of the Steam Plant, million m ³	FC NG_gas recovery unit-2 of SP PJ	The same as above
9.	Consumption of power station coal in CHPP, th. t	FC energy coal_CHPP_PJ	The same as above
10.	Total electricity consumption at MMK, GWh	EC gross_PJ	Report on electricity consumption by MMK departments/Electricity consumption report (Technological Department)
11.	Electricity imported by MMK from Urals power grid, GWh	EC import_PJ	Report "Analysis of consumption of energy resources at MMK" (Technological Department)

Table 4.2. Monitored parameters